
 Advanced search

Linux Journal Issue #109/May 2003

Features

Kernel Mode Linux by Toshiyuki Maeda
Run any program in kernel space for maximum speed, but use
your new power responsibly.

Introducing the 2.6 Kernel by Robert Love
From the scheduler to the device drivers, there's a lot to like and
learn about the upcoming Linux 2.6.

The Kernel Configuration and Build Process by Greg Kroah-Hartman
Configuring and building the kernel is simpler and more flexible
than 2.4 and before. Here's how to customize your kernel or
integrate your new feature.

Reiser4, Part II: Designing Trees that Cache Well by Hans Reiser
Discover the next step in the evolution of an innovative
filesystem for Linux.

Indepth

The Linux Softsynth Roundup by Dave Phillips
Whether you want to emulate a vintage synthesizer or create a
totally new sound, there's software to help make it happen.

Learning Regular Expressions by Giovanni Organtini
Discover a powerful, fast technique for text searching and
filtering.

Embedded

Advanced Memory Allocation by Gianluca Insolvibile

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/109/6516.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6530.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6568.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6324.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6390.html

Keeping memory requirements low can save you time and
money. Here's how to bend malloc() to your will.

Toolbox

Kernel Korner Writing Stackable Filesystems by Erez Zadok
At the Forge Introducing Plone by Reuven M. Lerner
Cooking with Linux Battles inside the Computer by Marcel Gagné
Paranoid Penguin Using Firewall Builder, Part I by Mick Bauer

Columns

Linux for Suit Closing the Chasm by Doc Searls
EOF Doing Good and Preventing Bad by Phil Hughes

Reviews

Programming Jabber by Paul Barry
Free Software, Free Society: Selected Essays of Richard M. Stallman
by Marco Fioretti

Departments

Letters
upFRONT
From the Editor
On the Web
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6485.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6639.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6638.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6629.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6630.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6499.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6539.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6591.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6620.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6683.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6682.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6680.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6681.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Kernel Mode Linux

Toshiyuki Maeda

Issue #109, May 2003

Now you don't have to write a module to run a program in kernel space. Run
any program there with this patch.

Kernel Mode Linux (KML) is a technology that enables the execution of ordinary
user-space programs inside kernel space. This article presents the background,
an approach and an implementation of KML. A brief performance experiment
also is presented.

Traditional kernels protect themselves by using the hardware facilities of CPUs.
For example, the Linux kernel protects itself by using a CPU's privilege-level
facility and memory protection facility. The kernel assigns itself the most-
privileged level, kernel mode. User processes are at the least-privileged level,
user mode. Thus, the kernel is protected by CPUs, because programs executed
in user mode cannot access memory that belongs to programs executed in
kernel mode.

This protection-by-hardware approach, however, has a problem: user
processes cannot access the kernel completely. That is, the kernel cannot
provide any useful services, such as filesystems, network communication and
process management, to user processes. In short, user processes cannot
invoke system calls in the kernel.

To cope with this problem, traditional kernels exploit hardware facilities that
modern CPUs provide for, escalating a program's privilege level in a safe and
restricted way. For example, the Linux kernel for the IA-32 platform uses a
software interrupt mechanism inherent to IA-32. The software interrupt can be
seen as a special jump instruction whose target address is restricted by the
kernel. At initialization, the kernel sets the target address of the software
interrupt to the address of a special routine that handles system calls. To
invoke system calls, a user program executes a special instruction, int 0x80.
Then, the system-call handling routine in the kernel is executed in kernel mode.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The routine performs a context switch; that is, it saves the content of the
registers of the user program. Finally, it calls the kernel function that
implements the system service specified by the user program.

The system call-by-hardware approach can become very slow, however,
because the software interrupt and the context switch require heavy and
complex operations. On the recent Pentium 4, the software interrupt and
context switch is about 132 times slower than a mere function call.

By the way, recent Linux kernels for IA-32, versions 2.5.53 and later, use a pair
of special instructions, sysenter and sysexit, for system calls. But, this is still
about 36 times slower than a mere function call.

The obvious way to accelerate system calls is to execute user processes in
kernel mode. Then, system calls are handled quickly because no software
interrupts and context switches are needed. They can be function calls only,
because the user processes can access the kernel directly. This approach may
seem to have a security problem, because the user processes executed in
kernel mode can access arbitrary portions of the kernel. Recent advances in
static program analysis, such as type theory, can be used to protect the kernel
from user processes. Many technologies enable this protection-by-software
approach, including Java bytecode, .NET CIL, O'Caml, Typed Assembly Language
and Proof-Carrying Code.

KML: Execute User Processes in Kernel Mode

As a first step toward a kernel protected by software, I have implemented KML.
KML is a modified Linux kernel that executes user processes in kernel mode,
which then are called kernel-mode user processes. Kernel-mode user
processes can interact with the kernel directly. Therefore, the overhead of
system calls can be eliminated.

KML is provided as a patch to the source of the original Linux kernel, so you
need to build the kernel from the source. To use KML, apply the patch and
enable Kernel Mode Linux when you configure your kernel. Build and install the
kernel, and then reboot. The KML patch is available from www.yl.is.s.u-
tokyo.ac.jp/~tosh/kml.

In current KML, programs under the directory /trusted are run as kernel-mode
user processes. The kernel itself doesn't perform any safety check. For
example, the following commands:

% cp /bin/bash /trusted/bin && /trusted/bin/bash

execute bash in kernel mode.

http://www.yl.is.s.u-tokyo.ac.jp/~tosh/kml
http://www.yl.is.s.u-tokyo.ac.jp/~tosh/kml

What Kernel-Mode User Processes Can Do

Kernel-mode user processes are ordinary user processes except, of course, for
their privilege level. Therefore, they basically can do whatever an ordinary user
process can do. For example, a kernel-mode user process can invoke all system
calls, even fork, clone and mmap. In addition, if you use a recent GNU C library
(2.3.2 and later or the development version from CVS), system calls are
translated automatically to function calls in kernel-mode user processes, with a
few exceptions, such as clone. Therefore, the overhead of system calls in your
program is removed without modifying it.

The paging mechanism also works. That is, kernel-mode user processes each
have their own address space, the same as ordinary user processes. Moreover,
even if the kernel-mode user process excessively allocates huge memory, the
kernel automatically pages out the memory, as it does for ordinary user
processes.

Exceptions, such as segmentation faults and illegal instruction exceptions, can
be handled the same as an ordinary user process, unless the program
improperly accesses the memory of the kernel or improperly executes
privileged instructions. As an example, build the following program and execute
it as a kernel-mode process:

int main(int argc, char* argv[])
{
 (int)0 = 1;
 return 0;
}

The process is terminated by a segmentation fault exception, without a kernel
panic. This example also indicates that the signal mechanism works.

As a second example, build the following program and execute it as a kernel-
mode user process:

int main(int argc, char* argv[])
{
 for (;;);
 return 0;
}

Then, use Ctrl-C to send SIGINT to the process. Notice that it receives the signal
and exits normally.

This second example also indicates that process scheduling works. That is, even
if a kernel-mode user process enters an infinite loop, the kernel preempts the
process and executes other processes. You may have noticed already that your
system did not hang, even in the infinite loop of this example.

What Kernel-Mode User Processes Cannot Do

Although kernel-mode user processes are ordinary user processes, they have a
few limitations. If a kernel-mode user process violates these limitations, the
system will be in an undefined state. In the worst-case scenario, your system
may be broken.

Limitation 1: don't modify the CS, DS, SS or FS segment register. Current KML
for IA-32 assumes that these segment registers are not modified by kernel-
mode user processes, and it uses them internally.

Limitation 2: don't perform privileged actions improperly. In kernel mode,
programs can perform any privileged action. However, if your program
performs such actions in a way that is inconsistent with the kernel, the system
will be in an undefined state. For example, if you execute the following program
as a kernel-mode user process:

int main(int argc, char* argv[])
{
 /* disable hardware interrupts */
 __asm__ __volatile__ ("cli");
 for (;;);
 return 0;
}

your system will hang.

In my experience, few applications violate these limitations. Ones that do
violate them include WINE and VMware. These limitations are against only
kernel-mode user processes. Ordinary user processes are never affected by
these limitations, even when running on a KML-capable kernel.

KML Internals

In IA-32 CPUs, the privilege level of an executed program is determined by the
privilege level of the code segment in which the program is executed. Recall
that a program counter for IA-32 CPUs consists of a segment, specified by the
CS segment register, and an offset into the segment, the EIP register. The
privilege level of the code segment then is determined by its segment
descriptor. A segment descriptor has a field for specifying the privilege level of
the segment.

Basically, the Linux kernel prepares two segments, the kernel code segment
and the user code segment. The kernel code segment is used for the kernel
itself, and its privilege level is kernel mode. The user code segment is used for
ordinary user processes, and its privilege level is user mode. When using
execve on a user process, the original Linux kernel sets its CS segment register
to the user code segment. Thus, the user process is executed in user mode.

To execute a user process as a kernel-mode user process, the only thing KML
does is set the CS register of the process to the kernel code segment, instead of
to the user code segment. Then the process is executed in kernel mode.
Because of KML's simple approach, a kernel-mode user process can be an
ordinary user process.

The Stack Starvation Problem and Its Solution

As described in the previous section, the basic approach of KML is quite simple.
Its big problem is called stack starvation. First, I'll explain how the original Linux
kernel handles exceptions (page faults) and interrupts (timer interrupts) on
IA-32 CPUs. Then, I'll describe the stack starvation problem. Finally, I'll present
my solution to the problem.

In the original Linux kernel, interrupts are handled by interrupt handling
routines specified as gates in the Interrupt Descriptor Table (IDT). When an
interrupt occurs, an IA-32 CPU stops execution of the running program, saves
the execution context of the program and executes the interrupt handling
routine.

How the IA-32 CPU saves the execution context of a running program at
interrupts depends on the privilege level of the program. If the program is
executed in user mode, the IA-32 CPU automatically switches its memory stack
to a kernel stack. Then, it saves the execution context (EIP, CS, EFLAGS, ESP and
SS register) to the kernel stack. On the other hand, if the program is executed in
kernel mode, the IA-32 CPU doesn't switch its memory stack and saves the
context (EIP, CS and EFLAGS register) to the memory stack of the running
program.

What happens if a kernel-mode user process of KML accesses its memory stack,
which is not mapped by the page tables of a CPU? First, a page fault occurs, and
the CPU tries to interrupt the process and jump to a page fault handler
specified in the IDT. However, the CPU can't accomplish this work, because
there is no stack for saving the execution context. Because the process is
executed in kernel mode, the CPU can never switch the memory stack to the
kernel stack. To signal this fatal situation, the CPU tries to generate a special
exception, a double fault. Again, the CPU can't generate the double fault,
because there is no stack for saving the execution context of the running
process. Finally, the CPU gives up and resets itself.

To solve this stack starvation problem, KML exploits the task management
facility of IA-32 CPUs. The IA-32 task management facility is provided to support
process management for kernels. Using the facility, a kernel can switch
between processes with only one instruction. However, today's kernels don't

use this facility, because it is slower than software-only approaches. Thus, the
facility is almost forgotten by all.

The strength of this task management facility in IA-32 CPUs is that it can be
used to handle interrupts and exceptions. Tasks managed by an IA-32 CPU can
be set to the IDT. If an interrupt occurs and a task is assigned to handle the
interrupt, the CPU first saves the execution context of the interrupted program
to a task data structure of the program instead of to the memory stacks. Then,
the CPU restores the context from the task data structure specified in the IDT.

The most important point is there is no need to switch a memory stack if the
task management facility is used to handle interrupts. That is, if we handle page
fault exceptions with the facility, a kernel-mode user process can access its
memory stack safely.

However, if we handle all page faults with the facility, the performance of the
whole system degrades, because the task-based interrupt handling is slower
than the ordinary interrupt handling.

Therefore, we handle only double fault exceptions this way. So, only page faults
caused by memory stack absence are handled by the task management facility.
In my experience, memory stacks rarely cause page faults, and the
performance decrement is negligible.

Performance Measurement

To measure the degree of performance improvement, I conducted two
experiments. Both experiments compared performance of the original Linux
kernel and KML. I used the sysenter/sysexit mechanism for performance
measurement of the original Linux kernel, instead of the int 0x80 instruction.
The experimental environment is shown in Table 1.

Table 1. Experimental Environment

In the first experiment, I measured the latency of the getpid and gettimeofday
system calls. In the measurement, the system calls were invoked directly by
user programs, without libc. The latency was measured with the rdtsc
instruction. The result is shown in Table 2.

Table 2. Latency of System Calls (Unit: CPU Cycles)

The result shows that getpid was 36 times faster in KML than in the original
Linux kernel, and gettimeofday was twice as fast in KML as it was in the original
Linux kernel.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6516t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6516t2.html

The second experiment is a file I/O benchmark using the Iozone filesystem
benchmark. I measured the throughput of four types of file I/O: write, rewrite,
read and reread. The measurements were performed on various file sizes from
16KB to 256KB, and the buffer size was fixed at 8KB. The underlying filesystem
was ext3. In each measurement, I executed the Iozone benchmark 30 times
and chose the best throughput.

The throughput of reread is shown in Table 3. Due to space limitations, the
detailed results for write, rewrite and read are omitted.

Table 3. Throughput of reread: Buffer Size=8KB

The result shows that the throughput of reread in KML was improved by
6.8-21%. In addition, write was improved by 0.6-3.2%, rewrite was improved by
3.3-5.3% and read was improved by 3.1-15%.

These experimental results indicate that KML can improve the performance of
applications that invoke system calls often, such as those that read or write
many small files. For example, web servers and databases can be executed
efficiently in KML.

I've performed a benchmark for the Apache HTTP server on KML. It didn't show
performance improvement, because I have only a 100-base Ethernet LAN,
which became the main bottleneck. If I perform the benchmark on a faster
network (say, 1000-base Ethernet or faster), I predict it will show performance
improvement.

In the preceeding experiments, it is worth noting that KML eliminated only the
overhead of system calls. With some modification to the application, KML will
be able to do more for performance improvement. For example, kernel-mode
user processes can access I/O buffers directly in the kernel to improve I/O
performance.

Resources

email: tosh@is.s.u-tokyo.ac.jp

Toshiyuki Maeda is a PhD candidate in Computer Science at the University of
Tokyo. His favorite comics are Hikaru no GO (Hikaru's Go), Jojo no Kimyo na

https://secure2.linuxjournal.com/ljarchive/LJ/109/6516t3.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6516s1.html
mailto:tosh@is.s.u-tokyo.ac.jp

Boken (Jojo's Bizarre Adventure) and Runatikku Zatsugidan (Lunatic Acrobatic
Troupe).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Introducing the 2.6 Kernel

Robert Love

Issue #109, May 2003

Scheduler and audio improvements are only two of the features you'll notice
when the 2.5 development series becomes 2.6. Here's a kernel hacker's view
into the near future.

The kernel has come a long way since Linus branched off 2.4.15 to create 2.5.0
back on November 22, 2001. Since then, rapid development has ensued,
resulting in a drastically different and much-improved kernel. This article
discusses the more interesting, important features and their impact on the
performance and reliability of Linux.

History of 2.5 Thus Far

In Linux kernel parlance, the minor version number of a kernel denotes
whether that kernel belongs to a stable series or a development series. Even
minor version numbers denote stable kernels, and odd minor version numbers
denote development kernels. When a development kernel is fully mature and
deemed stable, its minor version number is incremented to an even value. For
example, the 2.3 kernel development series gave way to the 2.4 stable series.

The current development kernel is 2.5. The initial work on a development series
is quite brisk, and many new features and improvements are incorporated.
When Linus and the kernel developers are satisfied with the new feature set, a
feature-freeze is declared, which has the purpose of slowing development. The
last feature-freeze occurred on October 31, 2002. Ideally, when a feature-freeze
is declared, Linus will not accept new features—only additions to existing work.
When the existing features are complete and nearly stable, a code-freeze is
declared. During a code-freeze, only bug fixes are accepted, in order to prepare
the kernel for a stable release.

When the development series is complete, Linus releases the kernel as stable.
This time around, the stable kernel most likely will be version 2.6.0. Although

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the official release date is “when it is done”, a good estimate is third or fourth
quarter 2003.

In March 2001 and again in June 2002, the core kernel developers met at Kernel
Summits to discuss the kernel. The primary goal of 2.5 was to bring the aging
block layer (the part of the kernel responsible for block devices, such as hard
drives) into the 21st century. Other concerns centered on scalability, system
response and virtual memory (VM). The kernel hackers met all—and many
more—of these goals. The list of important new features includes:

• O(1) scheduler
• preemptive kernel
• latency improvements
• redesigned block layer
• improved VM subsystem
• improved threading support
• new sound layer

In this article, I discuss a lot of new technology and innovation that has gone
into the 2.5 kernel and will appear in 2.6. The development is the result of hard
work from many individuals. I am going to refrain from mentioning names,
because if I start giving credit I inevitably will miss some people, and I would
rather give no list than an incomplete or incorrect one. The Linux Kernel Mailing
List archive is a good source of who did what.

O(1) Scheduler

The process scheduler (or, simply, the scheduler) is the subsystem of the kernel
responsible for allocating processor time. It decides which process gets to run
when. This is not always an easy job. From a possibly large list of processes, the
scheduler must ensure that the most worthy one is always running. When there
is a large number of runnable processes, selecting the best process may take
some time. Machines with multiple processors only add to the challenge.

Improvements to the scheduler ranked high on the list of needed
improvements. Specifically, developers had three specific goals:

• The scheduler should provide full O(1) scheduling. Every algorithm in the
scheduler should complete in constant time, regardless of the number of
running processes.

• The scheduler should have perfect SMP scalability. Ideally, each processor
should have its own locking and individual runqueue. A runqueue is the
list of runnable processes from which the scheduler chooses.

• The scheduler should have improved SMP affinity. It should naturally
attempt to group tasks on a specific CPU and run them there. It should
migrate tasks from one CPU to another only to resolve imbalances in
runqueue length.

The new scheduler accomplishes all of these goals. The first goal was full O(1)
scheduling. O(1) denotes an algorithm that executes in constant (fixed) time.
The number of runnable tasks on a system—or any other variable, for that
matter—has no bearing on the time to execute any part of the scheduler.
Consider the algorithm for deciding which task should run next. This job
involves looking at the highest priority task, with timeslice remaining, that is
runnable. In the previous scheduler, the algorithm was analogous to:

for (each runnable process on the system) {
 find worthiness of this process
 if (this is the worthiest process yet) {
 remember it
 }
}
run the most worthy process

With this algorithm, the worthiness of each process must be checked. This
implies the algorithm loops n-times for n processes. Hence, this is an O(n)
algorithm—it scales linearly with the number of processes.

Conversely, the new scheduler is constant with respect to the number of
processes; it does not matter whether there are five or 5,000 runnable
processes on the system. It always takes the same amount of time to select and
begin executing a new process:

get the highest priority level that has processes
get first process in the list at that priority level
run this process

In this algorithm, it is possible to simply “get the highest priority level” and “get
first process in the list”, because the scheduler keeps track of these things. It
simply has to look up, instead of search for, these values. Consequently, the
new scheduler can select the next process to schedule without looping over all
runnable processes.

The second goal is perfect SMP scalability. This implies the performance of the
scheduler on a given processor remains the same as one adds more processors
to the system, which was not the case with the previous scheduler. Instead, the
performance of the scheduler degraded as the number of processors
increased, due to lock contention. The overhead of keeping the scheduler and
all of its data structures consistent is reasonably high, and the largest source of
this contention was the runqueue. To ensure that only one processor can
concurrently manipulate the runqueue, it is protected by a lock. This means,
effectively, only one processor can execute the scheduler concurrently.

To solve this problem, the new scheduler divides the single global runqueue
into a unique runqueue per processor. This design is often called a multiqueue
scheduler. Each processor's runqueue has a separate selection of the runnable
tasks on a system. When a specific processor executes the scheduler, it selects
only from its runqueue. Consequently, the runqueues receive much less
contention, and performance does not degrade as the number of processors in
the system increases. Figure 1 is an example of a dual-processor machine with
a global runqueue vs. a dual-processor machine with per-processor runqueues.

Figure 1. Left, the 2.4 Runqueue; Right, the 2.5/2.6 Runqueue

The third and final goal was improved SMP affinity. The previous Linux
scheduler had the undesirable characteristic of bouncing processes between
multiple processors. Developers call this behavior the ping-pong effect. Table 1
demonstrates this effect at its worst.

Table 1. A Worst-Case Example of the Ping-Pong Effect

The new scheduler solves this problem, thanks to the new per-processor
runqueues. Because each processor has a unique list of runnable processes,
processes remain on the same processor. Table 2 shows an example of this
improved behavior. Of course, sometimes processes do need to move from
one processor to another, like when an imbalance in the number of processes
on each processor occurs. In this case, a special load balancer mechanism
migrates processes to even out the runqueues. This action occurs relatively
infrequently, so SMP affinity is well preserved.

Table 2. The New Scheduler Preserves CPU Affinity

The new scheduler has a lot more features than its name implies. Table 3 is a
benchmark showing off the new scheduler.

Table 3. The chatserver benchmark tests message passing between a large
number of processes. Results are in messages/second.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6530t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6530t2.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6530t3.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6530t3.html

Preemptive Kernel

The purpose of kernel preemption is to lower scheduling latency. The result is
improved system response and interactive feel of the system. The Linux kernel
became preemptive with version 2.5.4. Previously, kernel code executed
cooperatively. This meant a process—even a real-time one—could not preempt
another process executing a system call in the kernel. Consequently, a lower
priority process could priority invert a higher priority process by denying it
access to the processor when it requested it. Even if the lower priority process'
timeslice expired, it would continue running until it completed its work in the
kernel or voluntarily relinquished control. If the higher priority process waiting
to run is a text editor in which the user is typing or an MP3 player ready to refill
its audio buffer, the result is poor interactive performance. Worse, if the higher
priority process is a specialized real-time process, the result could be
catastrophic.

Why was the kernel not preemptive from the start? Because it is more work to
provide a preemptive kernel. If tasks in the kernel can reschedule at any
moment, protection must be in place to prevent concurrent access to shared
data. Thankfully, the issues a preemptive kernel creates are identical to the
concerns raised by symmetrical multiprocessing (SMP). The mechanisms that
provide protection under SMP were adapted easily to provide protection with
kernel preemption. Thus, the kernel simply leverages SMP spinlocks as
preemption markers. When code would hold a lock, preemption is similarly
disabled. Otherwise, it is safe to preempt the current task.

Latency Improvements

Most likely, one can now see the next bottleneck. The preemptive kernel simply
reduces scheduling latency from the entire length of kernel execution to the
duration of spinlocks. It's definitely shorter, sure, but it's still a potential
problem. Thankfully, reducing lock duration, which is equal to the length of
time kernel preemption is disabled, is doable.

Kernel developers optimized kernel algorithms for lower latency. They primarily
concentrated on the VM and virtual filesystem (VFS) and, consequently, greatly
reduced the lock duration. The result is excellent system response. Users have
observed worst-case scheduling latency in 2.5, even on average machines, at
less than 500 nanoseconds.

Redesigned Block Layer

The block layer is the chunk of the kernel responsible for supporting block
devices. Traditional UNIX systems support two general types of hardware
devices, character devices and block devices. Character devices, such as serial

ports and keyboards, manipulate data as a stream of characters, or bytes, one
at a time. Conversely, block devices manipulate data in groups of a fixed size
(called blocks). Block devices do not merely send or receive a stream of data;
instead, any of their blocks are accessible. Moving to one block from another is
called seeking. Examples of block devices include hard disks, CD-ROM drives
and tape backup devices.

Managing block devices is a nontrivial job. Hard disks are complicated pieces of
hardware for which the operating system needs to support arbitrary reading
and writing of any valid block. Further, because seeks are expensive, the
operating system must intelligently manage and queue requests to block
devices to minimize seeks.

The block layer in Linux was in serious need of a redesign. Thankfully, starting
with kernel 2.5.1, the revamp began. The most interesting work involved
creating a new flexible and generic structure to represent block I/O requests,
eliminating bounce buffers and supporting I/O directly into high memory,
making the global io_request_lock per queue and building a new I/O scheduler.

Prior to 2.5, the block layer used the buffer_head structure to represent I/O
requests. This method was inefficient for several reasons, the largest being the
block layer often had to break the data structures into smaller chunks, only to
reconstruct them later in the I/O scheduler. In 2.5, the kernel makes use of a
new data structure, struct bio, to represent I/O. This structure is simpler,
appropriate for both raw and buffered I/O, works with high memory and may
be split and merged easily. The block layer consistently uses the new bio
structure, resulting in cleaner, more efficient code.

The next issue was eliminating the bounce buffer used when performing I/O
into high memory. In the 2.4 kernel, an I/O transfer from a block device into
high memory has to make an unfortunate extra stop. High memory is non-
permanently mapped memory for which the kernel must provide special
support. On Intel x86 machines, this is any memory over about 1GB. Any I/O
request into high memory (for example, reading a file from a hard drive into a
memory address greater than 1GB) must make use of a special bounce buffer
that resides in low memory. The rationale is that some devices may be unable
to understand high memory addresses. The result is devices always must
perform their I/O transfers into low memory. If the final destination is in fact
high memory, the data must bounce from the block device to low memory and
finally into high memory (Figure 2). This extra copy introduces significant
overhead. The 2.5 kernel now automatically supports transferring directly into
high memory, eliminating the bounce buffer logic for devices that are capable.

Figure 2. The Bounce Buffer in the 2.4 Kernel

The next bottleneck that developers tackled was the global I/O request lock.
Each block device is associated with a request queue, which stores block I/O
requests, the individual bio structures that represent each block read or write.
The kernel constantly updates the queues as drivers add or remove requests.
The io_request_lock protects the queues from concurrent access—code may
update a queue only while holding the lock. In kernels prior to 2.5, a single
global lock protects all the request queues in the system. The global lock
prevents concurrent access to any queue, and the lock merely needs to prevent
concurrent access to any single queue. In 2.5, a fine-grained lock for each
queue replaced the global request lock (Figure 3). Consequently, the kernel now
can manipulate multiple queues at the same time.

Figure 3. The 2.5 kernel introduces one lock per request queue.

Finally, a new I/O scheduler solved the remaining block layer inefficiency. The I/
O scheduler is responsible for merging block requests and sending them to the
physical devices. Because seeks are expensive, the I/O scheduler prefers to
service contiguous requests. To this end, it sorts incoming requests by sector.
This is an important feature for both disk performance and longevity. The
problem is, however, that repeated I/O requests to contiguous sectors could
prevent servicing of a request for a nonadjacent sector. The new I/O scheduler
solves this problem by implementing deadlines for I/O requests. If the I/O
scheduler starves a request past its deadline, the I/O scheduler services the

starved request rather than continuing to merge requests at the current sector.
The new I/O scheduler also solves the writes-starving-reads problem by giving
preferential treatment to read requests over write requests. This change
greatly improves read latency. Last but not least, the request queue is now a
red/black tree, which is an easily searchable data structure, instead of a linear
list.

Improved VM Subsystem

During 2.5, VM finally came into its own. The VM subsystem is the component
of the kernel responsible for managing the virtual address space of each
process. This includes the memory management scheme, the page eviction
strategy (what to swap out when memory is low) and the page-in strategy
(when to swap things back in). The VM often has been a rough issue for Linux.
Good VM performance on a specific workload often implies poor performance
elsewhere. A fair, simple, well-tuned VM always seemed unobtainable—until
now.

The new VM is the result of three major changes:

• reverse-mapping (rmap) VM
• redesigned, smarter, simpler algorithms
• tighter integration with the VFS layer

The net result is superior performance in the common case without the VM
miserably falling to pieces in the corner cases. Let's briefly look at each of these
three changes.

Any virtual memory system has both physical addresses (the address of actual
pages on your physical RAM chips) and virtual addresses (the logical address
presented to the application). Architectures with a memory management unit
(MMU) allow convenient lookup of a physical address from a virtual address.
This is desirable because programs are accessing virtual addresses constantly,
and the hardware needs to convert this to a physical address. Moving in the
reverse direction, however, is not so easy. In order to resolve from a physical to
a virtual address, the kernel needs to scan each page table entry and look for
the desired address, which is time consuming. A reverse-mapping VM provides
a reverse map from virtual to physical addresses. Consequently, instead of:

for (each page table entry)
 if (this physical address matches)
 we found a corresponding virtual address

the rmap VM simply can look up the virtual address by following a pointer. This
method is much faster, especially during intensive VM pressure. Figure 4 is a
diagram of the reverse mapping.

Figure 4. Reverse mapping maps one physical page to one or more virtual pages.

Next, the VM hackers redesigned and improved many of the VM algorithms
with simplification, great average-case performance and acceptable corner-
case performance in mind. The resulting VM is simplified yet more robust.

Finally, integration between the VM and VFS was greatly improved. This is
essential, as the two subsystems are intimately related. File and page write-
back, read-ahead and buffer management was simplified. The pdflush pool of
kernel threads replaced the bdflush kernel thread. The new threads are
capable of providing much-improved disk saturation; one developer noted the
code could keep sixty disk spindles concurrently saturated.

Threading Improvements

Thread support in Linux always has seemed like an afterthought. A threading
model does not fit perfectly into the typical UNIX process model, and
consequently, the Linux kernel did little to make threads feel welcome. The
user-space pthread library (called LinuxThreads) that is part of glibc (the GNU C
library) did not receive much help from the kernel. The result has been less
than stellar thread performance. There was a lot of room for improvement, but
only if the kernel and glibc hackers worked together.

Rejoice, because they did. The result is greatly improved kernel support for
threads and a new user-space pthread library, called Native POSIX Threading
Library (NPTL), which replaces LinuxThreads. NPTL, like LinuxThreads, is a 1:1
threading model. This means one kernel thread exists for every user-space
thread. That developers achieved excellent performance without resorting to
an M:N model (where the number of kernel threads may be dynamically less
than the number of user-space threads) is quite impressive.

The combination of the kernel changes and NPTL results in improved
performance and standards compliance. Some of the new changes include:

• thread local storage support
• O(1) exit() system call
• improved PID allocator
• clone() system call threading enhancements
• thread-aware code dump support

https://secure2.linuxjournal.com/ljarchive/LJ/109/6530f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6530f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6530f4.large.jpg

• threaded signal enhancements
• a new fast user-space locking primitive (called futexes)

The results speak for themselves. On a given machine, with the 2.5 kernel and
NPTL, the simultaneous creation and destruction of 100,000 threads takes less
than two seconds. On the same machine, without the kernel changes and NPTL,
the same test takes approximately 15 minutes.

Table 4 shows the results of a test of thread creation and exit performance
between NPTL, NGPT (IBM's M:N pthread library, Next Generation POSIX
Threads) and LinuxThreads. This test also creates 100,000 threads but in much
smaller parallel increments. If you are not impressed yet, you are one tough
sell.

Table 4. Results of the thread creation and exit test: this test measures the time
for ten initial threads to each create and destroy one, five or ten parallel
threads.

New Sound Layer

The long-awaited merge of the advanced Linux sound architecture (ALSA)
began in kernel 2.5.5. ALSA has a number of improvements over open sound
system (OSS), the previous sound layer. Most importantly, ALSA provides a
much more robust and feature-filled API than OSS. ALSA drivers and the
accompanying user-space library (alsa-lib) allow for the creation of advanced
audio applications with minimal effort.

ALSA supports a large number of sound devices and provides a backward-
compatible OSS interface. For users who still require or prefer OSS, however,
drivers most likely will remain through 2.6.

A Look to the Future

It may be a bit irresponsible to begin looking past 2.6 before it is even released.
It is interesting, however, to consider what we may see (or at least want to see)
in the 2.7 development kernel. With luck, we will see the long-desired tty
(terminal) layer rewrite. The tty layer has grown into a large and confusing hack.

Also high on everyone's wish list is a SCSI layer rewrite. Currently, the SCSI layer
is too dumb and its drivers are too smart. It also may be possible to unify parts
of the IDE and SCSI layers into a generic disk layer. Whatever the case, the SCSI
layer needs a bit of cleanup.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6530t4.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6530t4.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6530t4.html

After these items, the rest is uncertain. It is risky to make any predictions; the
above are mere observations on what we need today. As always, the actual
work in 2.7 will depend on the itch the developers feel like scratching.

Regardless of the future, the 2.6 kernel looks great—excellent scalability, swift
desktop response, improved fairness and happily cooperating VM and VFS
layers.

email: rml@tech9.net

Robert Love is a kernel hacker who works on various projects, including the
preemptive kernel and the scheduler. He is a Mathematics and Computer
Science student at the University of Florida and a kernel engineer at MontaVista
Software. He hates fish.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:rml@tech9.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Kernel Configuration and Build Process

Greg Kroah-Hartman

Issue #109, May 2003

Starting with the 2.5 series, it's simpler and faster to customize your kernel or
add a driver.

The process of building a kernel has two parts: configuring the kernel options
and building the source with those options. In versions before the 2.5 kernel,
configuration was driven by a Config.in file within every subdirectory and a
main help file, Documentation/Configure.help. The language used to describe
the build process was based loosely on a shell-style language that would
control which configuration options were presented to the user, depending on
which options were currently presented.

This worked reasonably well, but over time the variety of different options in
the kernel stretched the language beyond what it could reasonably handle. In
the 2.5.45 kernel release, Roman Zippel's rewrite of the configuration language
and configuration programs was placed in the main kernel tree. The new
configuration language is much more flexible and powerful. It also unifies the
help text with the configuration logic, making it easier to apply patches for
individual drivers, without having to worry about conflicts within a single
Configuration.help file.

Also during the 2.5 series, Kai Germaschewski and the other kbuild developers
slowly reworked makefile logic within the kernel, making it easier to build the
kernel based on the selected options. This article describes the format of the
makefile and configuration files in the 2.5 kernel and shows how to add a new
driver to the build process.

Configuring the Kernel

To configure different kernel options, a user runs either a text-mode or a
graphical kernel configurator. The text-mode configurator can be run with
make config and prompts the user to select configuration options in order

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

(Figure 1). The ncurses text version is more popular and is run with the make

menuconfig option (Figure 2). The graphical configurator is run with make

xconfig and uses Qt as the widget set (Figure 3).

Figure 1. Configuring the Kernel with make config

Figure 2. make menuconfig makes it easier to back up and correct mistakes.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6568f3.large.jpg

Figure 3. The Qt-Based make xconfig

When the kernel configurator is run, it reads the main kernel configuration file,
located in arch/i386/Kconfig for the i386 platform. Other architectures have the
main configuration files located in their main directories. This main
configuration file then includes other configuration files from the different
subdirectories in the kernel directory tree. Those configuration files also can
include other configuration files as needed. For example, the arch/i386/Kconfig
file contains the line:

source "sound/Kconfig"

which will read information from that file. This sound/Kconfig file then includes
a lot of other files:

source "sound/core/Kconfig"
source "sound/drivers/Kconfig"
source "sound/isa/Kconfig"
source "sound/pci/Kconfig"
source "sound/ppc/Kconfig"
source "sound/arm/Kconfig"
source "sound/usb/Kconfig"

The sound/usb/Kconfig file describes all of the ALSA USB driver options, like
this:

ALSA USB drivers
menu "ALSA USB devices"
 depends on SND!=n && USB!=n

config SND_USB_AUDIO
 tristate "USB Audio/MIDI driver"
 depends on SND && USB
 help
 Say 'Y' or 'M' to include support for

https://secure2.linuxjournal.com/ljarchive/LJ/109/6568f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6568f3.large.jpg

 USB audio and USB MIDI devices.
endmenu

The # character can be used to comment Kconfig files. Anything written after it
on the same line is not read by the configurator, but it is useful for
documenting what the file is for and what it should do.

The menu and endmenu commands tell the configurator to declare a new
menu level or new screen in some of the configuration programs. On the menu
line, the name of the menu should be specified within “ characters. For this file,
the menu is called "ALSA USB devices".

Menus and configuration options can be controlled to display or not. In this
example, the USB option menu is only displayed if the CONFIG_SND and
CONFIG_USB options are selected, which is controlled by the line depends on

SND!=n && USB!=n. To help decrease the amount of typing involved, all
configuration options automatically start with CONFIG, which is not used within
the configuration language. The valid states for a configuration option are:

• y—the option is enabled.
• n—the option is not enabled.
• m—the option is set to be built as a module.

If both the CONFIG_SND and CONFIG_USB options are not set to n (meaning
they are set either to be built in to the kernel or to build as a module), the
CONFIG_SND_USB_AUDIO option is presented to the user. This option can be
set to one of the three values, and it is described as a “tristate” value. The text
that should be shown to the user is "USB Audio/MIDI driver":

tristate "USB Audio/MIDI driver"

The valid values for describing a configuration variable are:

• bool—the variable can be set only to y or n.
• tristate—the variable can be set to y, n or m.
• int—the variable can be set to any numeric value.

This configuration option is controlled by a depends logic line, which follows
the same logic as a menu option. The CONFIG_SND_USB_AUDIO option
depends on both the CONFIG_SND and CONFIG_USB options, meaning that if
one of these options is set to a module, then the CONFIG_SND_USB_AUDIO
option also should be set to a module. If both of the controlling options are not
enabled (meaning both are set to n), this option will not be displayed. If both of
these options are set to y, this option can be selected as n, y or m. All of this is
defined with the simple line:

depends on SND && USB

Within the kernel code, the configuration variable will be seen (the
CONFIG_SND_USB_AUDIO in the above example), so the code can test for it or
any other kernel configuration option's existence. However, using #ifdef within
a .c file to test for different configuration options is against the kernel-style
programming guidelines, which I covered in my article “Proper Linux Kernel
Coding Style” [LJ, July 2002, www.linuxjournal.com/article/5780]. Instead, limit
the use of #ifdef to .h files, keeping the .c files cleaner and easier to read.

Previously, the help text for a configuration option was placed in one big
Configuration.help file. Now the help text is placed right after the depends line
within the Kconfig file. It begins with a line containing either help or ---help---,
followed by a number of lines of help text that are indented two spaces from
the help line.

Adding a New Configuration Option

To add a new configuration option, simply add new lines to an existing Kconfig
file, in the same location as a related configuration option. For example, if a
new USB sound device driver is written for the ALSA sound system, it would go
into the sound/usb directory, and the sound/usb/Kconfig file would be added.
This new device driver controls the mythical FooBar USB speaker device. It
depends on having the CONFIG_SND and CONFIG_USB options enabled in
addition to the CONFIG_SND_USB_AUDIO option, as the new driver uses some
functions found in that driver. The new configuration option should be placed
after the SND_USB_AUDIO option but before the closing endmenu command,
and it would look something like:

config SND_USB_FOOBAR
 tristate "USB FooBar speaker device driver"
 depends SND_USB_AUDIO
 help
 Say Y here if you want to use FooBar USB
 speaker device.
 This code is also available as a module
 (= code which can be inserted in and
 removed from the running kernel whenever
 you want). The module will be called
 usbfoobar.o.

This option will now show up when the SND_USB_AUDIO option is selected
(Figure 4).

https://secure2.linuxjournal.com/ljarchive/LJ/099/5780.html

Figure 4. The Newly Enabled FooBar USB Speaker Device

Building the Kernel

The kernel is built with a system of individual makefiles that are all linked
together when the kernel is built, forming a large makefile. The individual
makefiles do not look like any standard makefile, but instead follow a special
format that is unique to the kernel build process. The makefile needs to build
only the necessary files, depending on the configuration options enabled, in the
proper format (as modules or built in to the kernel). As an example, drivers/
usb/misc/Makefile in the 2.5.59 kernel release looks like:

#
Makefile for the rest of the USB drivers
(the ones that don't fit into any other
categories)
#
obj-$(CONFIG_USB_AUERSWALD) += auerswald.o
obj-$(CONFIG_USB_BRLVGER) += brlvger.o
obj-$(CONFIG_USB_EMI26) += emi26.o
obj-$(CONFIG_USB_LCD) += usblcd.o
obj-$(CONFIG_USB_RIO500) += rio500.o
obj-$(CONFIG_USB_SPEEDTOUCH) += speedtch.o
obj-$(CONFIG_USB_TEST) += usbtest.o
obj-$(CONFIG_USB_TIGL) += tiglusb.o
obj-$(CONFIG_USB_USS720) += uss720.o
speedtch-objs := speedtouch.o atmsar.o

The line:

obj-$(CONFIG_USB_LCD) += usblcd.o

builds the usblcd.c file into a module if the CONFIG_USB_LCD configuration
option is set to m. Otherwise, it is built into the kernel directly if that
configuration option is set to y. This step is all that is necessary to add to a
kernel makefile if the module is made from only a single .c file.

If the driver consists of multiple .c files, the name of the files needs to be listed
on separate lines, along with the name of the module that this driver is called.
In the previous example file, this listing of file and driver names looks like:

obj-$(CONFIG_USB_SPEEDTOUCH) += speedtch.o

and

speedtch-objs := speedtouch.o atmsar.o

The first line controls whether the speedtch module is built. If it is, the line
indicates whether it is compiled into the kernel or stands as a module. The
second line explains that the speedtouch.c and atmsar.c files will be built into
.o files and then linked together into the speedtch.o module.

In older kernels, if a file exported symbols, it needed to be explicitly mentioned
in the kernel makefiles. In 2.5 and later kernels, that mention is no longer
necessary.

Adding a New Driver to the Build Process

To add a new driver to the kernel build process, a single line needs to be added
if the driver is contained within a single file. Based on the previous example of
the FooBar USB speaker device, the line:

obj-$(CONFIG_SND_USB_FOOBAR) += usbfoobar.o

is added to sound/usb/Makefile.

If the driver is contained in two files, such as foobar1.c and foobar2.c, an
additional line needs to be added:

usbfoobar-objs := foobar1.o foobar2.o

Conclusion

The kernel configuration and build process in the 2.5 kernel is much simpler
and more flexible than in the previous kernel versions. Thanks go to Roman
Zippel and Kai Germaschewski for doing the work to make it easier for kernel
developers to focus on writing code and not have to worry about the intricacies
of the kernel build process.

A good resource for more information on the specifics of the Kbuild process is
available from Sam Ravnborg, at marc.theaimsgroup.com/?l=linux-
kernel&m=104162417329638.

http://marc.theaimsgroup.com/?l=linux-kernel&m=104162417329638
http://marc.theaimsgroup.com/?l=linux-kernel&m=104162417329638

Greg Kroah-Hartman is currently the Linux USB and PCI Hot Plug kernel
maintainer. He works for IBM, doing various Linux kernel-related things and
can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Reiser4, Part II: Designing Trees that Cache Well

Hans Reiser

Issue #109, May 2003

Version 4 of the Reiser filesystem flattens the tree data structure fo rbetter
performance than version 3. Here's how it's structured.

This article is the second in a series on the design of the Reiser4 filesystem. The
first article [LJ, December 2002] defined basic concepts: trees, nodes and items.
This article explains why balanced trees are better than unbalanced trees and
why B+trees are better than B-trees by explaining and applying the principles of
caching. The article then applies these same principles to a classic database
technique used in ReiserFS v3 called binary large objects (BLOBs). It suggests
that BLOBs reduce the effectiveness of caching internal nodes by making the
tree no longer truly balanced. It also shows how Reiser4 stores objects larger
than a node without unbalancing the tree.

I apologize to readers for the delay of this article, which is due to the Halloween
feature-freeze for 2.6 and the need to stabilize Reiser4 quickly at that time.

Fanout

The fanout rate (n) refers to the number of nodes pointed to by each level's
nodes (Figure 1). If each node can point to n nodes of the level below it, then
starting from the top, the root node points to n internal nodes at the next level,
each of which points to n more internal nodes at its next level and so on. m
levels of internal nodes can point to nm leaf nodes containing items in the last
level. The more you want to store in the tree, the larger you have to make the
fields in the key that first distinguish the objects, then select parts of the object
(the offsets). This means your keys must be larger, which decreases fanout
(unless you compress your keys, but that will wait for our next version).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f1.large.jpg

Figure 1. Three Four-Level, Height-Balanced Trees

In Figure 1, the first graph is a four-level tree with a fanout of n = 1. It has only
four nodes, starting with the (red) root node, traversing the (burgundy) internal
and (blue) twig nodes and ending with the (green) leaf node, which contains the
data. The second tree, with four levels and a fanout of n = 2, starts with a root
node, traverses two internal nodes, each of which points to two twig nodes (for
a total of four twig nodes) and each of these points to two leaf nodes for a total
of eight leaf nodes. Lastly, a four-level, fanout of n = 3 tree is shown, which has
one root node, three internal nodes, nine twig nodes and 27 leaf nodes.

B+Trees Are Better than B-Trees

You can store not only pointers and keys in internal nodes but also the objects
to which those keys correspond. This is what the original B-tree algorithms did
(Figure 2).

Figure 2. A B-Tree

Then, B+trees were invented that have only pointers and keys stored in internal
nodes with all of the objects stored at the leaf level (Figure 3).

Figure 3. A B+Tree

https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f3.large.jpg

B+Trees Have a Higher Fanout than B-Trees

Fanout is increased when we put only pointers and keys in internal nodes and
don't dilute them with object data. Increased fanout raises our ability to cache
all of the internal nodes, because there are fewer internal nodes. People often
respond to this by saying, “but B-trees cache objects, and caching objects is just
as valuable.” This is not, on average, the answer. Of course, discussing averages
makes the discussion much more difficult.

However, we need to cover some cache design principles before getting to this.
Let's suppose the following:

• You have two sets of things, A and B.
• You need things from those two sets semi-randomly, with a tendency for

some things to be needed much more frequently than others, but which
things those are can shift over time.

• You can keep things around after you use them in a cache of limited size.
• You tie the caching of each thing from A to the caching of some particular

thing from B. This means that whenever you fetch something from A into
the cache, you fetch its partner from B into the cache.

This increases the amount of cache required to store everything recently
accessed from A. If there is a strong correlation between the need for the two
particular objects that are tied in each of the pairings, stronger than the gain
from spending those cache resources on caching more members of A and B
according to the LRU (least recently used) algorithm, then this might be
worthwhile. If no such strong correlation exists, it is bad. LRU means that we
choose the least recently used thing to discard from the cache when we need
to make more room. Various approximations of LRU are the most commonly
used caching algorithms in OS design.

But wait, you might say, you need things from B also, so it is good that some of
them were cached. Yes, you need some random subset of B. The problem is
that without a correlation, the things from B that you need are not especially
likely to be those same things from B that were tied to the things from A that
were needed. Choosing what from B you bring into the cache and keep in the
cache on the basis of something other than LRU may reduce the effectiveness
of caching, unless it is done according to an algorithm at least as good as LRU.
Often choosing which members of B to cache based on which members of A
have been cached is not as good as LRU, and so we have a problem.

This tendency to inefficiently tie things that are randomly needed exists outside
the computer industry. For instance, suppose you like both popcorn and sushi,
with your need for them on a particular day being random. Suppose that you

like movies randomly. Suppose a theater requires you to eat only popcorn
while watching the movie you randomly found optimal to watch, and not eat
sushi from the restaurant on the corner while watching that movie. Is this a
socially optimum system? Suppose quality is randomly distributed across all
hot dog vendors. If you can only eat the hot dog produced by the best movie
displayer on a particular night that you want to watch a movie, and you aren't
allowed to bring in hot dogs from outside the movie theater, is this a socially
optimum system? Optimal for you?

Tying strongly correlated things together can sometimes be good for
performance, however. Many filesystems tie access to information about the
file's size to information about the file's name. This seems to work well, better
than LRU would.

Tying uncorrelated things together is a common error in designing caches but
is still not enough to describe why B+trees are better. With internal nodes, we
store more than one pointer per node, meaning pointers are not cached
separately. You could argue that pointers and the objects to which they point
are more strongly correlated than the different pointers. I hope what we have
discussed here is instructive, but we still need another cache design principle.

My Definition of Cache Temperature

Let the cache temperature of something be equal to how often you access it,
times the average cost to fetch it from disk, divided by the number of bytes of
cache it consumes. You may notice a certain careful lack of precise detail in this
definition—particularly, how small objects read individually tend to be hotter
because of the cost of performing seeks. Other definitions of cache
temperature are possible, but this one is most convenient for this article.

If two types of things cached in nodes have different average temperatures,
segregating them into separate nodes helps caching. Suppose you have R bytes
of RAM for cache and D bytes of disk. Suppose that 80% of accesses are to the
most recently used things that are stored in H (hotset) bytes of nodes. Reducing
the size of H so it is smaller than R is important for performance. If you
disperse your frequently accessed data evenly, a larger cache is required, and
caching is less effective.

Caching Principles

If, all else being equal, we increase the variation in temperature among all
nodes, we increase the effectiveness of using a fast small cache.

If two types of things have different average temperatures, separating them
into separate nodes increases the variation in temperature in the system as a
whole.

If all else is equal, and if two types of things cached several to a node have
different average temperatures, segregating them into separate nodes instead
helps caching.

Pointers to Nodes

Pointers to nodes frequently tend to be accessed relative to the number of
bytes required to cache them. Consider that you have to use the pointers for all
tree traversals that reach the nodes beneath them, and that they are smaller
than the nodes to which they point.

Putting only node pointers and delimiting keys into internal nodes concentrates
the pointers. Because pointers tend to be two orders of magnitude more
frequently accessed per byte of their size than items storing file bodies, a high
average temperature difference exists between pointers and object data.

According to the caching principles described previously, segregating these two
types of things with different average temperatures (pointers and object data)
increases the efficiency of caching.

Now you might say, why not segregate by actual temperature instead of by
type, because type correlates only with temperature? We do what we can easily
and effectively code, with not only temperature segregation in consideration.
Some tree designs rearrange the tree so that objects with a higher temperature
are higher in the tree than pointers with a lower temperature. The difference in
average temperature between object data and pointers to nodes is so high that
I don't find such designs a compelling optimization, plus they add complexity.
Given the two order of magnitude average temperature difference, I suspect
that if I am wrong it is not by enough to care about.

On a side note, although these other tree designs just mentioned migrate
objects higher in the tree according to temperature, if one was merely to
segregate by temperature without changing levels, it might be more effective. If
one had no compelling semantic basis for aggregating objects near each other
(this is true for some applications), and if one wanted to access objects by
nodes rather than individually, it would be interesting to have a node repacker
sort object data into nodes by temperature.

B+Trees Cache Better than B-Trees

B+trees separate the pointers and the data into different nodes. On average,
the pointers to the nodes of the tree are hotter than the data of the things
stored in the tree (by about two orders of magnitude). Therefore, according to
the principles of caching explained previously, caching is improved by
separating the pointers to nodes from the data of things stored in the tree.

In the industry, B+trees are known in practice to be better than B-trees, exactly
as this theory predicts. It is also accepted wisdom that balanced trees perform
better than unbalanced trees.

What is not currently accepted wisdom, but is predicted by the application of
these principles, is that the use of, what are called by the database industry,
BLOBs hurts performance. More on that (and what BLOBs are) in a bit.

What Does Balanced Mean?

The term balanced is used for several distinct purposes in balanced tree
literature. Two of the most common are balanced height and balanced space
usage within the nodes of the tree. Unfortunately, these different definitions
are a classic source of confusion for readers of the literature, and I'll try to
avoid that in this article.

Height-balanced trees are those for which each possible search path from root
node to leaf node has exactly the same length; length equals the number of
nodes traversed from root node to leaf node. For instance, the height of the
tree in Figure 1 is four, the height of the tree in Figure 4 is three and the height
of the single-node tree is one.

Figure 4. A Three-Level Tree

Most algorithms for accomplishing height balancing do so by growing the tree
only at the top. Thus, the tree never gets out of height balance.

Figure 5 shows an unbalanced tree. It originally could have been balanced and
then lost some of its internal nodes due to deletion, or it could have been

balanced once but now be growing by insertion, without yet undergoing
rebalancing.

Figure 5. An Unbalanced Tree

Traditional database methods for storing objects larger than nodes (BLOBs)
make trees unbalanced. BLOBs are a method of storing objects larger than a
node by storing pointers to nodes containing the object. These pointers
commonly are stored in what are called the leaf nodes (level 1, except that the
BLOBs are then sort of a basement “level B”) of a “B*” tree.

In Figure 6, a BLOB has been inserted into a leaf node of a four-level tree,
meaning pointers to blocks containing the file data have been inserted into the
leaf node. This is what a ReiserFS v3 tree looks like.

Figure 6. A Four-Level Tree after Insertion of a BLOB

This is a significant definitional drift, albeit one accepted by the entire database
community. By the principles of caching described here, this reduces the
separation of pointers and object data, which in turn reduces the effectiveness
of caching. I suggest that those principles of caching indicate it is a bad design.
For all of the reasons that B+trees are better than B-trees, Reiser4 trees are
better than ReiserFS v3 trees, though to a less extreme amount.

By contrast, Figure 7 is a Reiser4 tree with a fanout of three, a BLOB in the level-
one leaf nodes and the pointer to it in the level-three twig nodes. In this case,
the BLOB's blocks are all contiguous. For reasons of space, it is set below the
other leaf nodes, but its extent pointer is in a level-two twig node, like every
other item's pointer.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f6.large.jpg

Figure 7. A Reiser4 tree stores the BLOB in the level-one leaf nodes.

Although it is accepted that B+trees are better than B-trees, it is not well
accepted that BLOBs are a bad design, and indeed, it is the dominant paradigm
within the database industry.

Gray and Reuter say the criterion for searching external memory is to
“minimize the number of different pages along the average (or longest) search
path....by reducing the number of different pages for an arbitrary search path,
the probability of having to read a block from disk is reduced” (see Resources).

My problem with this explanation of the effectiveness of the height-balanced
approach is it does not convey that you can get away with having a moderately
unbalanced tree, provided you do not significantly increase the total number of
internal nodes. In practice, most unbalanced trees do have significantly more
internal nodes. In practice, most moderately unbalanced trees have a moderate
increase in the cost of in-memory tree-traversals and an immoderate increase
in the amount of I/O due to the increased number of internal nodes not
remaining in cache because there are now too many of them.

But, if one were to put all the BLOBs together in the same location in the tree,
because the amount of internal nodes would not significantly increase, the
performance penalty for having them on a lower level of the tree than all other
leaf nodes would not be a significant additional I/O cost. There would be a
moderate increase in that part of the tree traversal time cost, which is
dependent on RAM speed, but this would not be so critical. Segregating BLOBs
could perhaps substantially recover the performance lost by architects not
noticing the drift in the definition of height balancing for trees. There might also
be a substantial I/O-related performance effect for segregating BLOBs that is
unrelated to tree considerations. Perhaps someday someone will try it and tell
us what happens.

Reiser4 returns to the classical definition of a height-balanced tree in which the
lengths of the paths to all leaf nodes are equal. It does not pretend that all of
the nodes storing objects larger than a node are somehow not part of the tree,
even though the tree stores pointers to them.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6569f7.large.jpg

Reiser4 reduces the number of internal nodes, nodes containing pointers, from
the number required for ReiserFS v3. The number of internal nodes required
for ReiserFS v3 to store the 188MB Linux kernel 2.4.1 source code tree is 1,629.
Reiser4 requires only 164. As a result, the amount of RAM required to store
pointers to nodes is reduced dramatically in Reiser4.

A Hint about Articles Ahead

In upcoming articles we will discuss why, even when nothing is cached in
memory, Reiser4's performance is much higher than that of ReiserFS v3, why
dancing trees are better than space-usage balanced trees and how we added
support for transactions while at the same time greatly reducing the amount of
data that is written twice.

Hans Reiser (reiser@namesys.com) entered UC Berkeley in 1979 after
completing the eighth grade and majored in “Systematizing”, an individual
major based on the study of how theoretical models are developed. His senior
thesis discussed how the philosophy of the hard sciences differs from that of
computer science, with the development of a naming system as a case study.
He is still implementing that naming system, of which Reiser4 is the storage
layer.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:reiser@namesys.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Linux Softsynth Roundup

Dave Phillips

Issue #109, May 2003

Are you ready to rock? Now that you've got ALSA and kernel preemption, add
software to turn your Linux box into a synthesizer studio.

Software sound synthesis (SWSS) has an honorable lineage in the history of
computers. Early experiments in digital sound synthesis took place at the
famous Bell Labs, where a team of researchers centered around Max Mathews
created the Music N series of audio synthesis software, culminating in Music V
in 1969. Since that time, Music V has evolved into a series of notable digital
sound synthesis environments, such as Csound, Cmix/RTCmix and Common
LISP Music. These environments typically provide the user with a language for
specifying the nature of sonic events, such as musical notes or sampled
sounds. These languages usually present users with a distinction between
instruments (the sound-producing designs) and scores (event characteristics,
such as, start time, duration and synthesis parameters). Users compose their
instruments and scores in their preferred SWSS language and then feed them
to the language's compiler. Output is directed to a file, which then can be
played by any sound system supporting the file format or, with sufficiently
powerful hardware, the output can be directed to a digital-to-audio converter
for rendering real-time audio output.

A standalone software synthesizer (softsynth) substitutes real-time control for
the score aspect of the model above. Softsynths typically come with attractive
GUIs, often emulating the appearance and operation of a hardware
synthesizer, and a MIDI keyboard or external sequencer is the expected
controller. Under the right circumstances, a softsynth can be controlled by a
concurrent process. For example, using the ALSA aconnect utility, a softsynth
can be wired to a MIDI sequencer running on the same machine. Then,
sequences can be recorded and played via the softsynth, eliminating the need
for an external synthesizer and containing the MIDI environment on a single
computer.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

A softsynth can be dedicated to a particular synthesis method (additive,
subtractive, FM, etc.), or it can be open-ended and modular. In short, additive
synthesis works by summing sine waves with varying frequencies, amplitudes
and phases until the desired sound is attained. Additive synthesis is a
computationally expensive synthesis method with a formidable amount of
detail required for realistic sounds. Subtractive synthesis begins with a sound
source rich in frequencies (such as a sawtooth wave or noise), then filters
frequencies out until the desired sound has been sculpted from the original
source. Subtractive synthesis is relatively easy to implement in hardware and
software, and its sounds are characteristically associated with the analog
synthesizers of the 1970s. FM (frequency modulation) synthesis works by
shaping the frequency components of one oscillator by the output of another,
creating complex audio spectra with little computational expense. Yamaha's
DX7 synthesizer is the most famous FM implementation, and the company's
OPL3 sound chip is certainly the most infamous.

Physical modelling and granular synthesis are two more recent synthesis
methods. Physical modelling synthesis models the mechanics of a real or
imaginary instrument and the physics of its activation. The method's
parameters are based less on familiar sono-musical models, such as
waveforms, frequencies and amplitudes, and more on the characteristics of
physically excited systems, such as airflow through a tube, the vibrations of a
plucked string or the radiating patterns of a struck membrane. Physical
modelling has become a popular synthesis method and is deployed in
synthesizers from Korg, Yamaha and others. Granular synthesis creates sounds
by ordering sonic quanta or grains into more or less dense sonic masses. Again,
its parameters are not so intuitive as in the older synthesis methods, but it is
powerful and can create a wide range of sounds. Granular synthesis has yet to
find its way into a popular commercial synthesizer, but hardware
implementations are found in the Kyma system and the UPIC workstation.

Synthesizer Architectures

A softsynth can be dedicated wholly to a single synthesis method, it can be a
hybrid of two or more methods, or it can take a more open-ended modular
design. Each architecture has its strengths. Broadly speaking, the modular
design is perhaps the most flexible, but it may sacrifice fineness of control
(resolution) for generality of purpose. A dedicated-method softsynth lacks the
modular synth's flexibility but usually provides much finer parameter control.

Modular synthesizers encourage a building-block approach by providing
separate synthesis primitives for connection in arbitrary ways. For example, an
oscillator's output can be directed to the input of an envelope generator (EG) or
vice versa, routing the EG's output to an oscillator input. This kind of black box

networking lends itself to software emulation, as we'll see when we meet some
modular synths later in this article.

The distinctions between the general types of software are blurring. For
example, Csound is now available with a set of FLTK-based widgets for user-
designed control panels. Many users already have created elaborate GUIs for
Csound's various synthesis methods, some of which are detailed enough to
function as standalone Csound-based softsynths. This trend is likely to continue
with GUIs evolving for the Common LISP Music and RTCmix SWSS
environments.

Graphic patching SWSS environments like jMax and Pd are another indicator of
this blurring tendency. They also provide graphics widgets that can be used to
construct synthesizer interfaces, but unlike Csound, these widgets are an
integral aspect of the basic working environment. jMax and Pd utilize a unique
combination of graphics and language primitives that are patched together by
virtual wires to create a synthesis or processing network. These environments
certainly can be employed as softsynths, but their generality of purpose places
them closer to Csound than to the softsynths reviewed here.

Beatbox-style synths are yet another softsynth design category. These
programs combine elements of a synthesizer, a drum machine and a
sequencer for an all-in-one accompaniment package, though the more
sophisticated examples are truly more flexible music composition systems.

These distinctions are brief, but for this article they suffice to indicate the basic
types of softsynths. For complete definitions of the various synthesis methods
and synthesizer architectures, see the standard references listed in Resources.

Plugins

If you've ever used Adobe Photoshop or The GIMP, you're already familiar with
the concept of plugins. For normal users, a plugin architecture extends a
program's capabilities without requiring an update or a recompile. For
applications programmers, a plugin architecture allows them to concentrate on
the basic design of their programs, letting the plugins provide more extended
or advanced features.

Musicians working with Windows/Mac audio software can use plugins written
to the Steinberg VST and Microsoft DirectX plugin APIs. Linux does not directly
support either of those APIs, although we shall see an indirect method of
support that does work under WINE. However, Linux audio developers have
come up with their own native plugin architecture called the Linux Audio
Developers Simple Plugin Architecture (LADSPA). The LADSPA API has become a
standard, and support for it is now an expected aspect of almost any new Linux

audio application. Some outstanding collections of LADSPA plugins are
available that include not only the typically expected effects and DSP but also
synthesis building blocks (oscillators, envelope generators, filters, etc.) and even
some fully formed plugin synthesizers. There are some notable non-LADSPA
plugins too.

Peter Hanappe's iiwusynth is a lightweight synthesizer that uses SoundFonts as
fuel for its synthesis engine. Given a decent set of SoundFonts, iiwusynth's
output is very good, and it has become popular as an embedded synth in many
applications. It also can be used as a standalone synthesizer from the
command line.

RX/Saturno is another lightweight plugin synthesizer that emulates the popular
Yamaha DX7 FM synthesizer. Developer Juan Linietsky has indicated that RX/
Saturno is still in the initial development stage, but it already is quite useful and
can be employed as a plugin synth in any program supporting the ALSA
sequencer.

Kjetil Matheussen's vstserver is interesting software that uses the capabilities of
WINE to fool VST plugins into believing they're working in their native Windows
environment. In most cases, performance is excellent, at least as good as under
Windows. Kjetil also has written two clients for the server, one to hook VST
plugins into Pd and one for LADSPA. The vstserver also supports some VSTi
plugins, which are fully formed instruments such as synthesizers, samplers and
MIDI sequencers wrapped into the VST plugin architecture.

Although LADSPA is an effective and popular standard, the “simple” aspect of
its design prohibits certain kinds of processing and control. LADSPA plugins
themselves do not permit direct parameter control via MIDI; though the plugins
are quite usable in a MIDI sequencer such as MusE. Once again, the Linux audio
development community has risen to the challenge with a new proposed
standard called XAP. The API is in the design stages, but the team working on
XAP includes the LADSPA designers and other talented Linux audio
programmers.

Get ALSA

The MIDI input hardware is typically a MIDI synthesizer keyboard, but any MIDI
instrument can be used. Connection to a standard sound card requires a MIDI
interface cable. OSS/Free and ALSA support MPU-401-compatible devices, so
some standalone MIDI cards will work also. ALSA provides direct support for
serial port and USB MIDI devices (I have not tested those connections myself)
as well as the very useful virmidi virtual MIDI ports.

On the software side, the basic OSS/Free Linux sound system (the kernel sound
system) is sufficient for working with the softsynths described here, but the
recommended system includes the ALSA library and drivers, the JACK audio
connection kit and a hardware MIDI input device. For best response, the kernel
should be compiled for low latency, optionally with the preemptive kernel
patch. The real-time clock (RTC) should be enabled also.

As of the 2.5 kernel development track, the OSS/Free sound system has been
officially replaced by ALSA. Stable kernels from 2.6 onward will build only the
ALSA system, which does have an excellent OSS/Free emulation layer for
compatibility with non-ALSA-aware applications. Kernels earlier than 2.5 include
the OSS/Free system, so users of those kernels must build and install ALSA
themselves. ALSA has been designed for the kind of interconnectivity common
to a modern sound system. ALSA provides API support for plugins, an advanced
audio client/server architecture and a set of utilities to ease system
configuration and management.

4Front Technology's proprietary OSS/Linux also works well with Linux
softsynths, though obviously it can't take direct advantage of a network of ALSA
sequencer clients.

Knowing JACK

JACK is a recursive acronym for the JACK Audio Connection Kit. It has been
designed for low latency professional-grade performance as a software bus for
the connection of out-of-process audio applications. JACK is somewhat similar
in purpose to sound servers such as the aRts server for KDE or GNOME's esd,
but JACK has been designed as a more robust solution incorporating pro-audio
standards. Programs playing on the JACK bus can route their audio I/O freely
between one another, permitting complex scenarios, such as routing the
output of a MIDI-controlled softsynth into a hard-disk recorder while applying
modulated plugin effects, all in real time with low-latency. Though a relative
newcomer to the Linux audio world, JACK already has caught the attention of
many developers and users, and we are rapidly approaching the point where
its deployment and use will be a matter of course for Linux audio programmers
and normal users alike.

The Testing Environment

The testing hardware included a generic machine with an 800MHz AMD Duron
CPU, 512MB RAM and a 15GB IDE hard disk. The audio hardware consisted of
two sound cards, a SoundBlaster SBLive Value and a SoundBlaster PCI128; a
Casio CZ101 synthesizer was used for external MIDI keyboard input. I used
Steve Ratcliff's pmidi MIDI file player, and I also employed a second computer
running Voyetra's Sequencer Plus Gold under MS-DOS. The video system

included a generic 19" monitor and a Voodoo3 graphics card. Audio output
from the sound cards ran to a Yamaha DMP7 mixer then out to a 100-watt QSC
power amplifier and a pair of Yorkville Sound YSM-10 reference speakers.

The low- and middle-level software included Linux kernel 2.4.5 patched for low
latency, the ALSA 0.9.0rc6 package (audio library, drivers and utilities), the latest
JACK and the LADSPA plugin sets from Richard Furse and Steve Harris. Other
support software included Maarten de Boer's alsamixergui and Bob Ham's
ALSA MIDI patch bay, both of which provide GUIs (and more) for the ALSA
alsamixer and aconnect utilities.

Running Softsynths as Root?

Many of the synths profiled here include the recommendation to be run with
root permissions, either as root yourself or by making the binary suid root.
Doing so usually ensures a higher priority for the running application but is also
considered a serious security risk if the user is on a network.

Apart from the security issues, I should explain that when a real-time process
runs away from the root user the outcome is not pretty, and your machine may
lock up entirely. In one test while running as root user, simply specifying an
unrecognized MIDI device froze my system. So be warned. Running as root can
indeed enhance performance, but you also are running risks. Run normal
applications as a normal user as much as possible.

The Linux Softsynth Roundup

The Software Synthesis section of the Linux Sound & Music Software site
includes a subsection of Softsynths & Samplers. More than 30 URLs are
currently active, taking you to a variety of software synthesizers. Table 1 has
pruned some of that variety by focusing on synthesizers capable of polyphonic
(plays many notes at once) real-time output, ignoring off-line synthesizers and
environments such as Csound or RTCmix. Due to their real-time nature, I have
included beatbox programs and the MAX-like environments of Pd and jMax.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6320t1.large.jpg

Table 1. The Linux Softsynth Roundup

Because this article is a roundup and not a shoot-out, I'll profile only some
selections from Table 1 and prune it a bit more. The profiles represent a cross
section of the various synthesis methods, but I have purposely focused on the
standalone softsynths.

amSynth

Nick Dowell's amSynth is an excellent representation of the dedicated
subtractive synthesis architecture. The signal flow is fixed in a classic design.
The output of the two oscillators is routed through a filter and an amplifier,
then that signal can be given to the effects (amSynth provides reverb and
distortion) and/or modulation stages for final processing before heading to
your sound card digital-to-analog converter (DAC). In classic synthesis, the main
parts of this design are referred to as the VCO (voltage-controlled oscillator),
the VCF (voltage-controlled filter) and the VCA (voltage-controlled amplifier).

https://secure2.linuxjournal.com/ljarchive/LJ/109/6320t1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320t1.large.jpg

Figure 1. amSynth

amSynth includes some great-sounding presets. No General MIDI patch is set
to support the General MIDI standardized map of instruments, but it does
respond to incoming MIDI Program Change messages. Because amSynth is
essentially a standalone single instrument that handles only one MIDI channel
at a time, it is perhaps best used as a lead or pad instrument. It can be driven
by a MIDI sequencer.

The full name for amSynth is Analogue Modelling Synthesizer. There are no real
voltage-controlled components, so we might rightly wonder if Nick has been
able to achieve his goal of modelling the sound of an analog subtractive synth.
I'm happy to report that the sounds from amSynth are fat and lively, but you
need not take my word for it. The excellent demos on the amSynth home page
show off its sounds far better than I can describe here.

ALSA Modular Synth

Dr Matthias Nagorni has written a variety of useful applications and utilities for
ALSA, JACK and LADSPA; however, his current crowning achievement must be
his wonderful ALSA Modular Synthesizer (AMS). This software emulates the
great modular synths of yesteryear, providing the user with a large selection of
modules to choose from.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f2.large.jpg

Figure 2. ALSA Modular Synth (AMS)

Figure 2 illustrates AMS in its most basic form. In a subtractive synthesis patch,
the routing essentially is identical to that used by amSynth, but the difference
lies in the greater flexibility of AMS. Unlike the fixed design of amSynth, AMS is
completely flexible with regard to the connections between its various
modules.

Most modules cheerfully accept arbitrary input connections and have little or
no concern for the destination of their own outputs. But beware; when
modules are connected in atypical configurations, the output can be quite
unusual or even overpowering, so take care with your system volume control
when testing such patches. Each module has its own dialog (shown in Figure 2),
which is opened by right-clicking over the module's name.

Dr Nagorni supplied the following informative notes:

AMS implements special features to ensure that all
three major synthesis methods [additive, subtractive,
FM] can be easily used with it. The module Dynamic
Waves implements additive synthesis of up to eight
oscillators in one single module. Each harmonic can be
shaped with an eight-point envelope, and the
envelopes are graphically visualized. To enable easy
access to integer harmonic tuning, useful for FM, VCOs
have an additional harmonic and subharmonic slider.
There is also the required linear FM input port. For
subtractive synthesis to work properly, it is crucial that
control voltages obey the classical logarithmic
convention of 1V/Octave. This way, you can move the

https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f2.large.jpg

filter cutoff wherever you like, and you can still have
perfect VCF tracking. Log Frequency is also useful at
other places, including vibrato with an LFO.

AMS has been designed for real-time work. It is especially well-suited for MIDI
control, and most parameters can be linked to a MIDI controller for real-time
changes. AMS can be used equally well as a monophonic or polyphonic synth,
and multiple instances of AMS may communicate over JACK to create a multi-
timbral setup. Its support for the LADSPA plugins extends its already rich
feature set, making AMS an ideal solution for those of us without access to a
hardware synthesizer. A complete MIDI composition environment can be built
from nothing more than a reasonably fast machine, one of the fine Linux MIDI
sequencers, such as MusE or Rosegarden, and AMS.

Some setups will work better than others, so the good doctor has prepared a
healthy supply of sample patches for your study and experimentation. You can
hear some of them in the demo files available from the AMS home page, but as
with all the synths profiled here, I suggest you download and install it yourself
to see and hear what really it can do.

SpiralSynth Modular

First there was SpiralSynth, then there was the SpiralLoops program, a cool
looping sequencer, and then there was the SpiralSynthBaby, designed to be a
plugin for SpiralLoops. Finally, developer Dave Griffiths decided to roll all of
them into one open-ended modular synthesizer construction kit called
SpiralSynth Modular (SSM). Like AMS, SpiralSynth Modular provides the user
with a canvas and a palette of modules for placement and connection on the
canvas, but SSM has its own unique design and sound-producing capabilities.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f3.large.jpg

Figure 3. SpiralSynth Modular

Figure 3 shows off SSM running its first tutorial patch. This example shows a
simple type of synthesis called wavetable synthesis. The wavetable is a
predefined stored waveform (sine, square, triangle, pulse, etc.) that is triggered
by the virtual keyboard and modified by the envelope generator before
heading out to the sound card DAC through the OSS output module. In the
example, we can see that the synthesizer is played through the computer
keyboard, but SSM also provides a MIDI module for receiving and routing MIDI
messages. The keyboard module is a nice touch, and I had great fun with it
playing SSM from my laptop's QWERTY keys.

SSM does not function as a native ALSA sequencer client, so it cannot be wired
directly to an ALSA port like amSynth or AMS. However, it can be hooked to the
standard OSS/Free MIDI device (/dev/midi) for input from any hardware or
software connected to that device. If your machine has no MIDI hardware, you
can employ ALSA's virmidi virtual MIDI ports by setting the MIDI channel to the
appropriate port in the SSM Options (/dev/snd/midiC1D0 for my laptop; see
Figure 4). This enables connection to other ALSA-aware processes through
aconnect or the ALSA patch bay.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f3.large.jpg

Figure 4. SSM Options

Dave Griffiths has thoughtfully provided some excellent demos of the synth on
the SSM home site. Its FLTK interface is pleasant and easy to use, the program
includes a generous share of interesting and useful modules, including LADSPA
support, and the latest version can be built with support for JACK. Dave plans to
include a much-improved plugin version of SpiralLoops for a soon-to-arrive
version of SSM, and we can expect more direct support for ALSA as well.

RTSynth

Stefan Nitschke's RTSynth is one of my favorite softsynths. It is another
excellent example of the patcher synth. A main canvas is presented, iconic
modules are deposited and connected together on the canvas, and right-
clicking on a module opens a dialog for editing its parameters. RTSynth is the
only softsynth represented here that creates its sounds via physical modelling.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f5.large.jpg

Figure 5. RTSynth

Physical modelling synthesis is capable of extremely realistic sounds. Some of
RTSynth's patches are quite convincing. The examples on the RTSynth home
page show off some amazing acoustic and electric guitar sounds in full
arrangements with bass, drums and keyboards. RTSynth is a multi-timbral
softsynth, complete with drumkits and effects processing, and the demos really
showcase its capabilities as a single-solution softsynth.

RTSynth is ALSA- and JACK-aware. It is fully MIDI-capable under ALSA and the
older OSS/Free kernel sound modules. On systems lacking the ALSA drivers, it is
still possible to connect RTSynth to external processes, such as a concurrently
running MIDI sequencer via the UNIX mechanism known as a named pipe. A
named pipe provides an easy method of interprocess communication for
programs that may have no other way to share data. Using RTSynth as an
example, here's how you set up a named pipe.

First, create the pipe with the mkfifo utility:

mkfifo $HOME/tmp/midififo

Next, prepare RTSynth for receiving data from the pipe:

RTSynth < $HOME/tmp/midififo

Finally, you must indicate the named pipe as the preferred output device for
the driving application. In the following example, I've used Simon Kagedal's
clavier virtual keyboard:

clavier -o $HOME/tmp/midififo

https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f5.large.jpg

Now you can play RTSynth directly from the virtual keyboard. You also can use
a normal, unnamed pipe to route the output from a process into RTSynth using
this type of command:

cat foo | RTSynth

These connectivity strategies are particularly effective in the absence of MIDI
hardware and/or the ALSA virmidi driver.

Bristol

Nick Copeland is perhaps best known for his SLab hard-disk recording system,
but he also has given us the Bristol Synthesizer Emulator. This softsynth
provides GUIs and synthesis engines for emulations of the Mini Moog, Moog
Voyager, Sequential Circuits Prophet-5, Roland Juno-6 and Yamaha DX7
synthesizers. It also provides graphic interfaces and engines for the Hammond
B3 and Vox Continental organs and the Fender Rhodes electric piano. Bristol
even emulates a generic mixing board and the Yamaha Pro10 digital mixer, but
they were not tested for this review.

Figure 6. Bristol

As shown in Figure 6, the GUIs are nicely drawn, but they are more than mere
eye candy. Nick has emulated the controls and functions found on the original
synths as much as possible; however, not all of a particular synth's features
may be implemented yet, and Nick notes that some emulations (notably the
DX7) still need some work. Meanwhile, all those switches and knobs and wheels
can be flipped, twirled and rotated in real time with smooth response and fast
parameter updates. Bristol accomplishes a rather daunting task by providing
not only the look-alike graphics for its variety of synthesizers and keyboards but
the sound-alike synthesis engines as well.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f6.large.jpg

Running Bristol with ./startBristol -v -h lists the runtime options to give the
synth a wide degree of performance customization. For example, I started
Bristol with ./startBristol -alsa -seq -bufsize 2048 -voices 6, which launches
Bristol in its default Mini Moog mode, declares ALSA as the driver source,
registers Bristol with the ALSA sequencer, sets the sound-card buffer size (the
default value is 1,024, but Nick recommends 2,048 for my SBLive) and restricts
the polyphony to six voices (Bristol's default polyphony is 16 voices).
Incidentally, Bristol can be run in multiple instances with simultaneous control,
effectively letting you layer synths exactly like we did in the old days.

I would need much more space to describe each of Bristol's interfaces
adequately. The example I've placed at www.linux-sound.org/sounds
demonstrates only the Mini Moog emulation, but it should give you an idea of
what you can expect from this synth engine—some old-school synthesizer fun.

Ultramaster Juno6

This synth is an excellent example of an emulated hardware synthesizer. The
Juno6 keyboard and panel controls are faithfully rendered, and like the Bristol
synth, all controls are active and available for manipulation at any time. I've
owned a Juno6, and Ultramaster's audio emulation is quite faithful to the
original, but with the stability of intonation of a digital synth. Best of all, the
arpeggiator works. Those of us who remember such amenities probably will
have great fun with this feature; alas, arpeggiators are not so common
anymore, so newbies can expect to while away many an hour finding
interesting and fun uses for this function.

Figure 7. Ultramaster Juno6

The Juno6 is a straightforward implementation of subtractive synthesis, lending
itself to sounds with dramatic filter sweeps. A short example WAV file can be
found on the Ultramaster home page, but you'll learn more about the synth's
sound and capabilities simply by playing around with it.

ZynAddSubFX

Paul Nasca's ZynAddSubFX is an interesting hybrid of additive and subtractive
synthesis, with an added effects section for further processing. If that's all
ZynAddSubFX offered, it still would grab your attention. An excellent FLTK

http://www.linux-sound.org/sounds
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f7.large.jpg

interface invites experimentation with the various parameters of the synthesis
strategies, and as an ALSA-aware client, you can drive the synth from your
favorite MIDI sequencer. Figure 8 shows ZynAddSubFX working with the pmidi
MIDI file player. It also shows ZynAddSubFX's Scales dialog opened to a
collection of tunings from the Scala program. Selecting a new scale
automatically updates the current patch's tuning, which invites exploration of
unusual intonations and induces some interesting changes upon familiar
material.

Figure 8. ZynAddSubFX

ZynAddSubFX is multi-timbral, with a different instrument per MIDI channel,
making it another good choice for an all-purpose softsynth (minus drums, alas).
Its sounds are created by straightforward synthesis methods, but the
deployment of those methods and the program's excellent interface combine
to help make some fine sounds. Performances can be recorded directly within
ZynAddSubFX, and the developer has placed several demos on-line that depict
the synth's power as a standalone multi-timbral softsynth. ZynAddSubFX is the
newest softsynth profiled here, but its development is steady. As this article
was being written, I learned that ZynAddSubFX is now JACK-aware (Figure 8), so
with support for scales and tunings from Scala, the ALSA sequencer client
configuration and JACK connectivity, this synth is a fine representative example
of modern Linux audio software.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f8.large.jpg

jMax and Csound

I know I promised to steer clear of profiling the more language-based synthesis
environment, but I also mentioned the blurring tendency occurring with
developments in those environments. jMax rapidly is evolving into a rich
multimedia composition/processing suite, but it also can be utilized as a
straightforward SWSS toolkit. Figure 9 illustrates a simple jMax synthesis patch,
complete with self-documentation. Although this example is itself trivial, jMax is
capable of far more complex synthesis patches.

Figure 10 demonstrates Istvan Varga's csoundfltk (a Csound package optimized
for Linux) running ImproSculpt, a real-time sampler with a rather complex FLTK
graphic interface. This example is not really a synthesis patch, but it shows off
the power of the Csound FLTK widget set that lets users design GUI panels and
control systems for their Csound synthesis and processing designs. Other
examples demonstrate Csound as a straightforward synthesizer, and interested
readers should check out the material available at www.csounds.com for more
examples of the FLTK/Csound powerhouse.

Figure 9. jMax

http://www.csounds.com
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f10.large.jpg

Figure 10. Istvan Varga's csoundfltk running Oeyvind Brandtsegg's ImproSculpt

The Wrap

The best closing advice I can give is to suggest that you check out some of the
profiled softsynths yourself. I can wax enthusiastic here in print, but the real
proof is in the hearing. So go forth, download and install some of this software,
and make some joyful noises. I'll be listening.

Resources

email: dlphilp@bright.net

Dave Phillips is a musician, teacher and writer living in Findlay, Ohio. He has
been an active member of the Linux audio community since his first contact
with Linux in 1995. He is the author of The Book of Linux Music & Sound, as
well as numerous articles in Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f10.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320f10.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6320s1.html
mailto:dlphilp@bright.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Regular Expressions

Giovanni Organtini

Issue #109, May 2003

For precision of text manipulation and description, it's hard to beat the power
of regexps.

Imagine you are looking for a name in a telephone directory, but you can't
remember its exact spelling. You can spend ages searching through all the
possible combinations, unless you have a tool that extracts the relatively small
number of options that matches your search, however incomplete it may be.
Regular expressions are such a tool.

Roughly speaking, a regular expression (or regexp) is a string that describes
another string or a group of strings. Several applications can profit from this
ability: Perl, sed, awk, egrep and even Emacs (try Ctrl-Alt-% after reading this
article) to name a few.

In fact, many of you already have used some sort of regular expression. In the
shell command:

ls *.pl

the characters *.pl act as a regular expression. That is, it is a string that
describes all the strings composed by any number of characters of any kind (*),
followed by a period (.), followed by two given characters (pl).

The standard set of rules used for composing regular expressions is able to
describe all strings, no matter how complicated they are. Unfortunately, life is
always more complicated. It turns out that at least two different versions of
regular expressions exist: extended and basic. Moreover, not all applications
support all the possible rules.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Basics of Regular Expressions

A regular expression is said to match a given string if it correctly describes it. A
given regular expression can match with zero to many strings. By convention,
regular expressions are written between slashes (/.../). In what follows, I use
extended regular expressions.

The simplest regular expression is a plain alphanumeric string. Such a regexp
matches with all strings containing its content as a substring. As an example,
consider the following verse from Cenerentola, my favorite opera by G. Rossini:
“Zitto, zitto, piano, piano, senza strepito e rumore.” The regexp /piano/ is said to
match with the verse, because the latter contains the same characters, with the
same sequence, of the regexp.

In order to better understand the examples I discuss, you can play with the
following Perl script, trying variations of the regexp it contains:

#!/usr/bin/perl
$verse = "Zitto, zitto, piano, piano, senza " .
 "strepito e rumore";
if ($verse =~ /piano/) {
 print "Match!\n";
} else {
 print "Do not match!\n";
}

In Perl, the operator =~ compares two regular expressions and returns “true” if
they match.

A few characters (called metacharacters) are not recognized as ordinary
characters and are used for special purposes. The *, for example, is used to
match zero or more times a group of characters that, in turn, is identified by a
couple of parentheses defining an atom, or a group of characters that must be
considered as a single entity. The regexp /(piano,)*/ matches with the sample
verse because the characters “ piano,”, forming an atom, are repeated twice. If
the atom is composed of a single character, parentheses may be omitted.

The meaning of the * within a regular expression is different from the one it
has in the shell. In regular expressions, the * is a modifier; it describes the
multiplicity of the atom on its left. So, the string “piano” is matched by p* in a
shell, but not within a regular expression: /p*/ matches with p, pp, ppp and so
on, and even with a null string.

To specify that an atom's multiplicity ranges between N and M, the symbol
{N,M} is used. {N} matches strings with exactly N repetitions of the preceding
atom; {N,} will match at least N of them. So, the following regular expressions
will match:

/(piano,){0,10}/
/(piano,){1,2}/
/(piano,){2}/

Of course, the first regexp will match with “ piano, piano, piano” too.

The metacharacters + and ? are shorthands, respectively, for {1,} and {0,1}.

Matched parenthesized atoms are automatically stored into special variables
(called back references) identified by the symbol \ followed by a number. The
first parenthesized atom occurrence in a regular expression will be stored in \1,
the second in \2 and so on. For example:

/Z(itto), z\1, (piano,)\2/

will match the above-mentioned verse (imagine that \1 = “itto” and \2 =
“piano,”).

The . metacharacter can describe any character, so the regular expression /.
(itto), .\1/ matches both “Zitto, zitto” and “zitto, zitto”. However, it even matches
with “Ritto, ritto”, which does not have the same meaning. To avoid being so
generic, you can specify a set of possible alternatives, listing the possible
characters in brackets:

/[Zz](itto), [Zz]\1/

A dash in brackets is used to specify a range of characters. For example, /[a-z]/

matches all lowercase characters, and /[A-Z]/ matches all uppercase characters.
/[a-zA-Z0-9_]/ matches any alphanumeric character or an undesrcore.

The metacharacter | can be used to express different alternatives. It works like
a logical OR statement. Therefore:

/Zitto|zitto/

will match with both “Zitto” and “zitto”.

The metacharacters ^ and $ match, respectively, the beginning and the end of a
string. If used inside brackets, the caret is interpreted as the negation operator.
So:

/[^a-z]itto/

will match Zitto, but not zitto ([^a-z] can be read as “any letter that is not a
lowercase letter”).

To match a metacharacter it's enough to put a backslash (\) in front of it to tell
the regexp to interpret it as an ordinary character. The \ character is often
called an escape character.

Using Regular Expressions

To appreciate the power of regular expressions, let's look at a simple Perl script
that helps system administrators look for authentication failures. For the
following examples I used rather expressive regular expressions to show
different features. You may write simpler ones to describe the same strings.

Each time someone fails to log in, syslogd writes messages to /var/log/
messages that read like this:

Jul 26 16:35:25 myhost su(pam_unix)[2549]:
authentication failure; logname=verdi uid=500
euid=0
tty= ruser=organtin rhost= user=root
Jul 27 14:54:36 myhost login(pam_unix)[688]:
authentication failure; logname=LOGIN uid=0
euid=0 tty=tty1 ruser= rhost= user=mozart

These lines list the time at which the login attempt was made, the user who
tried to log in as another user, if available, and the target user. For example, the
user verdi tried to log in as root two times, while someone failed to log in as
mozart from the console.

Consider the Perl script shown in Listing 1. It reads the /var/log/messages file,
then identifies the lines that look interesting and extracts only the relevant
information.

Listing 1. Sample Perl Script for Finding Authentication Errors

First of all, we select only relevant lines and match them with the regular
expression /authentication failure/ shown on line 7. Everything else is
discarded. Then each line is matched with a regular expression (line 8) that
should be read as follows: take all the strings starting (^) with exactly three ({3})
alphabetic ([a-zA-Z]) characters, followed by a space, followed by at most two
(+) characters that could be either numeric (0-9, equivalent in Perl to the
metacharacter \d) or a space. After a space, an arbitrary number (*) of digits or
semicolons must follow. The portion of the string described so far is enclosed
in parentheses, so it is stored in a back reference called \1 (it is the first one).
After that, any number of characters (.*) can be found before the string
“logname=”. That string must be followed by any number of alphanumeric
characters. Again, because there are a couple of parentheses, we will store
them in \2. Any number of characters, finally, can be present before the string
“user=”, followed by any number of alphanumeric characters. This all gets
stored into \3.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6324l1.html

From this example, you can see how it is possible to extract substrings from
strings. You do not need to know their relative positions, as long as you can
describe their appearance.

Perl provides a helpful feature for working with regexps. The automagic
definition of Perl variables named after the back references as $1, $2 and so on,
can be used after a regular expression has been matched. Perl also lets users
define useful symbols, such as \d or \w (equivalent to [A-Za-z0-9_]), as well as
POSIX-compliant symbols representing the same things (see man perlre for
more information).

Basic Regular Expressions

Basic regular expressions are used by several other programs, like sed or
egrep.

In basic regular expressions, the metacharacters |, + and ? do not exist, and
parentheses and braces need to be escaped to be interpreted as
metacharacters. The ^, $ and * metacharacters follow more complicated rules
(see man 7 regex for more details). In most cases, however, they behave like
their extended counterparts. It is often convenient to express the regular
expression in the extended format, then add the escape characters when
needed.

As an example, the script shown in Listing 2 generates an HTML-formatted
page to read the content of system log files using an internet browser. Besides
echoing HTML tags for the headers of the page and for a table, it simply lists
files in a given directory and pipes the result to sed, which transforms it using a
regexp. The syntax used by sed for text substitution is rather common and is
something like:

s/regexp/replacement/

where regexp is a regular expression that must be replaced.

Listing 2. Example Script for Generating and HTML-Formatted Page for Reading
Log Files

Essentially, the syntax represents a string composed of nine elements properly
described by the appropriate regular expressions. For example [rwxds-] asks
for the possible characters that can be found within the first element.

The latter part of the string consists of alphanumeric characters, with slashes
interspersed. You may notice that the regular expression used in this case is
(.*\/)(.*). The first group matches all characters preceding a (escaped) slash, i.e.,

https://secure2.linuxjournal.com/ljarchive/LJ/109/6324l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6324l2.html

the path name. The second group lists all the following characters (the
filename). The number of slashes in the path doesn't matter. Regular
expressions (both basic and extended), in fact, are said to be greedy—they try
to match as many characters as possible.

The result of the script is written to standard output and can be redirected to a
given file (by cron at fixed intervals, for example) to be shown on the Web.

Conclusion

Regular expressions are by far the most powerful tool for text manipulation
and description, and they are well supported under Linux on many
applications. Unfortunately, they are not supported at all (to my knowledge) by
the most popular search engines because of their complexities. But, can you
imagine how precise your search would be if you had the ability to describe the
page you are looking for with a regular expression?

email: Giovanni.Organtini@roma1.infn.it

Giovanni Organtini (g.organtini@roma1.infn.it) is a professor of Introduction to
Computing and Programming for Physicists at the University of Rome. He has
used Linux for years, both for fun and at work, where it is used for the
simulation of the CMS experiment (cmsdoc.cern.ch) on large farms and as part
of a complex data-acquisition system and machine control. Before the birth of
his son, Lorenzo, he used to travel, seeking good restaurants and attending
concerts and operas.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:Giovanni.Organtini@roma1.infn.it
mailto:g.organtini@roma1.infn.it
http://cmsdoc.cern.ch
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Advanced Memory Allocation

Gianluca Insolvibile

Issue #109, May 2003

Call some useful fuctions of the GNU C library to save precious memory and to
find nasty bugs.

Dealing with dynamic memory traditionally has been one of the most awkward
issues of C and C++ programming. It is not surprising that some supposedly
easier languages, such as Java, have introduced garbage collection mechanisms
that relieve programmers of this burden. But for hard-core C programmers, the
GNU C library contains some tools that allow them to tune, check and track the
usage of memory.

Memory Management Basics

A process' memory usually is classified as either static, the size is
predetermined at compile time, or dynamic, space is allocated as needed at
runtime. The latter, in turn, is divided into heap space, where malloc()'d
memory comes from, and stack, where functions' temporary work space is
placed. As Figure 1 shows, heap space grows upward, whereas stack space
grows downward.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. The heap and stack grow toward each other.

When a process needs memory, some room is created by moving the upper
bound of the heap forward, using the brk() or sbrk() system calls. Because a
system call is expensive in terms of CPU usage, a better strategy is to call brk()
to grab a large chunk of memory and then split it as needed to get smaller
chunks. This is exactly what malloc() does. It aggregates a lot of smaller malloc()
requests into fewer large brk() calls. Doing so yields a significant performance
improvement. The malloc() call itself is much less expensive than brk(), because
it is a library call, not a system call. Symmetric behavior is adopted when
memory is freed by the process. Memory blocks are not immediately returned
to the system, which would require a new brk() call with a negative argument.
Instead, the C library aggregates them until a sufficiently large, contiguous
chunk can be freed at once.

For very large requests, malloc() uses the mmap() system call to find
addressable memory space. This process helps reduce the negative effects of
memory fragmentation when large blocks of memory are freed but locked by

smaller, more recently allocated blocks lying between them and the end of the
allocated space. In this case, in fact, had the block been allocated with brk(), it
would have remained unusable by the system even if the process freed it.

Library functions that deal with dynamic memory are not limited to malloc()
and free(), although these are by far the most-used calls. Other available
functions include realloc(), to resize an already allocated block; calloc(), to
allocate a cleared block; and memalign(), posix_memalign() and valloc(), to
allocate an aligned block.

Dealing with Memory Status

The strategy adopted by the C library memory management code is optimized
for generic memory usage profiles. Although this strategy produces good
performance in most cases, some programs might benefit from slightly
different parameter tuning. First, check your memory usage statistics by using
either the malloc_stats() or the mallinfo() library calls. The former prints as a
standard error a brief summary of memory usage in the program. This
summary includes how many bytes have been allocated from the system,
gathered with brk(); how many are actually in use, found with malloc(); and how
much memory has been claimed, using mmap(). Here is a sample output:

Arena 0:
system bytes = 205892
in use bytes = 101188
Total (incl. mmap):
system bytes = 205892
in use bytes = 101188
max mmap regions = 0
max mmap bytes = 0

If you need to have more precise information and want to make more than a
printout, mallinfo() is helpful. This function returns a struct mallinfo containing
various memory-related status indicators; the most interesting are summarized
in the Sidebar “Useful Parameters Provided by mallinfo”. For a complete
description of the structure, take a look at /usr/include/malloc.h.

Useful Parameters Provided by mallinfo()

Another useful function provided by libc is malloc_usable_size(), which returns
the number of bytes you actually can use in a previously allocated memory
block. This value may be more than the amount you originally requested, due
to alignment and minimum size constraints. For example, if you allocate 30
bytes, the usable size is actually 36. This means you could write up to 36 bytes
to that memory block without overwriting other blocks. This is an extremely
awful and version-dependent programming practice, however, so please don't
do it. The most useful application of malloc_usable_size() probably is as a debug

https://secure2.linuxjournal.com/ljarchive/LJ/109/6390s1.html

tool. For example, it can check the size of a memory block passed from outside
before writing to it.

Controlling the Allocation Strategy

You can alter the behavior of the memory management functions by adjusting
some of the parameters exposed by the mallopt() function (Listings 1 and 2).

Listing 1. Setting the Trim Threshold with mallopt()

Listing 2. A smaller trim threshold might save space.

The prototype of this function and a basic set of four parameters are part of the
SVID/XPG/ANSI standard. The current GNU C library implementation (version
2.3.1 as of this writing) honors only one of them (M_MXFAST), leaving three out.
On the other hand, the library provides four additional parameters not
specified by the standard. Tunable parameters accepted by mallopt() are
described in the Sidebar “Tunable Parameters for mallopt()”.

Tunable Paramenter for mallopt()

Allocation tuning is possible even without introducing mallopt() calls inside your
program and recompiling it. This may be useful if you want to test values
quickly or if you don't have the sources. All you have to do is set the
appropriate environment variable before running the application. Table 1
shows the mapping between mallopt() parameters and environment variables,
as well as some additional information. If you wish to set the trim threshold to
64KB, for example, you can run this program:

MALLOC_TRIM_THRESHOLD=65536 my_prog

Speaking of trimming, it is possible to trim the memory arena and give any
unused memory back to the system by calling malloc_trim(pad). This function
resizes the data segment, leaving at least pad bytes at the end of it and failing if
less than one page worth of bytes can be freed. Segment size is always a
multiple of one page, which is 4,096 bytes on i386. The size of the memory
available to be trimmed is stored in the keepcost parameter of the struct
returned by mallinfo(). Automatic trimming is done inside the free() function by
calling memory_trim(), if the current value of keepcost is higher than the
M_TRIM_THRESHOLD value, and by using the value of M_TOP_PAD as the
argument.

Table 1. mallopt() Parameters Mapped to Environment Variables

https://secure2.linuxjournal.com/ljarchive/LJ/109/6390l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6390l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6390s3.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6390t1.html

Memory Debugging: Consistency Checks

Debugging memory is often one of the most time-consuming tasks when
developing complex programs. The two basic aspects of this problem are
checking memory corruption and tracing block allocation and release.

Memory corruption happens when writing to a location lying inside the legal
data segment but outside the boundaries of the memory block you intended to
use. An example is writing beyond an array's end. In fact, if you were to write
outside the legal data segment, a segmentation fault would halt the program
immediately or trigger the appropriate signal handler, allowing you to identify
the misbehaving instruction. Memory corruption is thus more subtle, because it
can pass unnoticed and cause a faulty behavior in a part of the program quite
far from the offending part. For this reason, the sooner you detect it in the
program, the higher your chances are of catching the bug.

Corruption may affect other memory blocks (messing with the application data)
and the heap management structures. In the former case, the only symptom
that something is going wrong comes from analyzing your own data structures.
In the latter case, you can rely on some specific GNU libc consistency check
mechanisms that alert you when something wrong is detected.

Memory checking in a program can be enabled as automatic or manual. The
former is done by setting the environment variable MALLOC_CHECK_:

MALLOC_CHECK_=1 my_prog

This mechanism is able to catch a fair number of boundary overflows and, in
some cases, to protect the program from crashing. The action undertaken
when a fault is detected depends on the value of MALLOC_CHECK_: 1 prints a
warning message to stderr but does not abort the program; 2 aborts the
program without any output; and 3 combines the effects of 1 and 2.

Automatic checking takes place only when memory-related functions are
invoked. That is, if you write beyond an array's end, it won't be noticed until the
next malloc() or free() call. Also, not all the errors are caught, and the
information you obtain is not always extremely useful. In the case of free(), you
know which pointer was being freed when the error was detected, but that
gives no hint whatsoever as to who trashed the heap. In the case of errors
detected during an allocation, you merely receive a “heap corrupted” message.

The alternative is to place manual checkpoints here and there in the program.
To do this, you must call the mcheck() function at the beginning of the program.
This function allows you to install a custom memory fault handler that can be
invoked each time heap corruption is detected. A default handler also is

available if you don't provide your own. Once mcheck() has been called, all the
consistency checks you get with MALLOC_CHECK_ are in place. Moreover, you
can call the mprobe() function manually to force a check on a given memory
pointer at any time. Values returned by mprobe() are summarized in the
Sidebar “mprobe() Results”.

mprobe() Results

If you want to check the whole heap and not only one block, you can call
mcheck_check_all() to walk through all the active blocks. You also can instruct
the memory management routines to use mcheck_check_all(), instead of
checking only the current block by initializing mcheck_pedantic() instead of
mcheck(). Be aware, though, that this approach is rather time consuming.

A third way to enable memory checking is to link your program with libmcheck:

gcc myprog.c -o myprog -lmcheck

The mcheck() function is called automatically before the first memory allocation
takes place—useful in those cases when some dynamic blocks are allocated
before entering main().

Memory Debugging: Tracing Blocks

Tracing the history of memory blocks helps in finding problems related to
memory leaks and usage or release of already freed blocks. For this purpose,
the GNU C library offers a tracing facility that is enabled by calling the mtrace()
function. Once this call is made, every heap operation is logged to a file whose
name must be specified in the environment variable MALLOC_TRACE. Analysis
of the log file then can be performed off-line using a Perl script that is provided
with the library and called, not surprisingly, mtrace. Logging can be stopped by
calling muntrace(), but keep in mind that applying tracing to portions of your
program may invalidate the result of post-processing. For example, false leaks
may be detected if you allocate one block while tracing and then free it after
muntrace().

Listing 3. Tracing with mtrace()

Here is a sample tracing session using the program in Listing 3:

$ gcc -g Listing_3.c -o Listing_3
$ MALLOC_TRACE="trace.log" ./Listing_3
$ mtrace trace.log
Memory not freed:

 Address Size Caller
0x08049718 0xa at malloc_debug/Listing_3.c:9

https://secure2.linuxjournal.com/ljarchive/LJ/109/6390s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6390l3.html

Memory tracing has nothing to do with protection from errors; calling mtrace()
won't prevent the program from crashing. Even worse, if the program segfaults,
the trace file is likely to be truncated and tracing may be inconsistent. To
protect against this risk, it is always a good idea to install a SIGSEGV handler
that calls muntrace(), because it closes the trace file before aborting (Listing 4).
More information on memory tracing can be found on the libc info page.

Listing 4. Remember to call muntrace() in the SIGSEGV handler.

Debugging Internals

Sometimes the standard debugging facilities provided by the GNU C library
may not be suited to the particular needs of your program. In this case, you can
resort either to an external memory debugging tool (see Resources) or carve
your own inside the library. Doing this is simply a matter of writing three
functions and hooking them to these predefined variables:

• __malloc_hook points to a function to be called when the user calls
malloc(). You can do your own checks and accounting here, and then call
the real malloc() to get the memory that was requested.

• __free_hook points to a function called instead of the standard free().
• __malloc_initialize_hook points to a function called when the memory

management system is initialized. This allows you to perform some
operations, say, setting the values of the previous hooks, before any
memory-related operation takes place.

Hooks also are available for other memory-related calls, including realloc(),
calloc() and so on. Be sure to save the previous values of the hooks and restore
them before calling malloc() or free() inside your routines. If you fail to do so,
infinite recursion prevents your code from working. Have a look at the example
given in the libc info page for memory debugging to see all the nifty details.

As a final note, consider that these hooks also are used by the mcheck and
mtrace systems. It's a good idea to be careful when using all of them combined.

Conclusions

The GNU C library offers several extensions that turn out to be quite useful
when dealing with memory. If you want to fine-tune your application's memory
usage or build a memory debugging solution tailored to your needs, you
probably will find these tools helpful or, at least, a good starting point to
develop your own mechanisms.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/109/6390l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6390s4.html

email: g.insolvibile@cpr.it

Gianluca Insolvibile has been a Linux enthusiast since kernel 0.99pl4. He
currently deals with networking and digital video research and development.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:g.insolvibile@cpr.it
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Writing Stackable Filesystems

Erez Zadok

Issue #109, May 2003

Now you can add a feature to your favorite filesystem without rewriting it.

Writing filesystems, or any kernel code, is hard. The kernel is a complex
environment to master, and small mistakes can cause severe data corruption.
Filesystems, however, offer a clean data access mechanism that is transparent
to user applications, which is why developers always desire to add new features
to filesystems. In this article, we provide a quick introduction so you can add
new functionality to existing filesystems without having to become a kernel or
filesystems expert.

So You Want to Be a Filesystem Developer?

Although Linux supports many filesystems, they are pretty similar: disk-based
filesystems, network-based filesystems, etc. Making a filesystem stable and
efficient takes years of effort, and once it's stable and working, you don't want
to break it by throwing in new features. Besides, maintainers of filesystems
rarely accept feature-enhancement patches to their stable filesystems. So, it is
no surprise that the most popular filesystems currently in use have not
fundamentally changed in years.

Suppose you want to write a simple encryption filesystem that uses a single
fixed cipher key to encrypt file data. Getting portable C code for various ciphers
is easy. Next, you have to tie the calls to encrypt and decrypt data buffers into
the filesystem. Conceptually the problem is simple: encrypt any data that
comes from the write system call before it is written to disk, and decrypt any
data that comes from the disk before it is passed back to the user process that
called the read system call.

Your first inclination might be to copy the 5,000+ lines of source code for ext2,
study it and then add your cipher calls to it. You should resist the urge to copy a
whole other filesystem as a starting point. Although it's only 5,000+ lines of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

code, kernel code is at least an order of magnitude more complex to develop
than user-level code. If you actually end up putting the calls to your cipher in
the right place in this new filesystem, you'll find you spent most of your time
studying it, only to add a small number of lines in some places. Even so, now
you've got yourself a single encrypting ext2 filesystem. What if you want an
encrypting NFS filesystem or any one of the plethora of other Linux filesystems?

Incremental Filesystem Development

Linux, like most OSes, separates its filesystem code into two components:
native filesystems (ext2, NFS, etc.) and a general-purpose layer called the virtual
filesystem (VFS). The VFS is a layer that sits between system call entry points
and native filesystems. The VFS provides a uniform access mechanism to
filesystems without needing to know the details of those filesystems. When
filesystems are initialized in the kernel, they install a set of function pointers
(methods in OO-speak) for the VFS to use. The VFS, in turn, calls these pointer
functions generically, without knowing which specific filesystem the pointers
represent. For example, an unlink system call gets translated into a service
routine sys_unlink, which invokes the vfs_unlink VFS function, which invokes a
filesystem-specific method by using its installed function pointer: ext2_unlink
for ext2, nfs_unlink for NFS or the appropriate function for other filesystems.
Throughout this article, we refer to the specific filesystem method using ->, as
in ->unlink().

To solve this problem of how to develop our encryption filesystem quickly, we
employ the following adage: “Any problem in computer science can be solved
by adding another level of indirection.” Luckily, the Linux VFS allows another
filesystem to be inserted right between the VFS and another filesystem. Figure
1 shows such a stackable encryption filesystem called Cryptfs. Cryptfs is called
stackable because it stacks on top of another filesystem (ext2). Here, the VFS
calls Cryptfs' ->write() method (cryptfs_write); Cryptfs encrypts the user data it
receives and passes it down by calling the ->write() method below (ext2_write).

Figure 1. An Example Stackable Encryption Filesystem

In general, stackable filesystems can stand alone and be mounted on top of any
other existing filesystem mountpoint; this means you only have to develop your
(stackable) filesystem once, and it will work with any other native (low-level)

filesystem such as ext2, NFS, etc. Moreover, as of Linux 2.4.20, stackable
filesystems even can be exported safely (via nfs-utils-1.0 or newer) to remote
NFS clients.

How a Stackable Filesystem Works

The basic function of a stackable filesystem is to pass an operation and its
arguments to the lower-level filesystem. The following distilled code snippet
shows how a stackable null-mode pass-through filesystem called Wrapfs
handles the ->unlink() operation:

int wrapfs_unlink(struct inode *dir,
 struct dentry *dentry)
{
 int err = 0;
 struct inode *lower_dir;
 struct dentry *lower_dentry;
 lower_dir = get_lower_inode(dir);
 lower_dentry = get_lower_dentry(dentry);
 /* pre-call code can go here */
 err = lower_dir->i_op->unlink(lower_dir,
 lower_dentry);
 /* post-call code can go here */
 return err;
}

When the VFS needs to unlink a file in a Wrapfs filesystem, it calls
wrapfs_unlink, passing it the inode of the directory in which the file to remove
resides (dir) and the name of the entry to remove (encapsulated in dentry).

Every filesystem keeps a set of objects that belong to it, including inodes,
directory entries and open files. When using stacking, multiple objects
represent the same file—only at different layers. For example, our Cryptfs in
Figure 1 may have to keep a directory entry (dentry) object with the clear-text
version of the filename, while ext2 will keep another dentry with the ciphertext
(encrypted) version of the same name. To be truly transparent to the VFS and
other filesystems, stackable filesystems keep multiple objects at each level.

This is why the first few actions that wrapfs_unlink takes are to locate, from the
arguments it gets, the inode and dentry that correspond to the same objects,
only at the filesystem mounted below. These get_lower_* functions essentially
follow pointers that previously were stored in the private fields of Wrapfs'
objects when those objects were created. Once the lower objects are located,
the main magic of stacking takes place. We call the lower-level filesystem's own
->unlink() method, through the lower-level directory inode, and pass it the two
lower objects.

Wrapfs is a full-fledged stackable null-layer (or loopback) filesystem that simply
passes all operations and objects (unmodified) between the VFS and the lower
filesystem. Wrapfs itself, however, is not easy to write for one main reason; it
has to treat the lower filesystem as if it were the VFS, while appearing to the

real Linux VFS as a lower-level filesystem. This dual role requires careful
handling of locks, reference counts, allocated memory and so on. Luckily,
someone already wrote and maintains Wrapfs. Therefore, Wrapfs serves as an
excellent template for you to modify and add new functionality.

Getting Started

Now that you understand how stacking works, what next? First, we have to
explore the places where we can insert our code into Wrapfs. Referring back to
the wrapfs_unlink code shown previously, there are three such places that
correspond to before, instead of or after the call to the lower-level ->unlink()
method.

1) Pre-call: you can insert code before the call to the lower ->unlink(). For
example, you could check if the user is trying to delete an important file and
prevent that from happening:

if (strcmp(dentry->d_name.name,
 "vmlinuz") == 0)
return -EACCES;

2) Call: you could replace the entire call itself. For example, instead of removing
the file, you could rename it, as part of a simple undo filesystem (we've all had
our share of unintended rm -f commands).

3) Post-call: here we could perform actions after the main operation returned
from the lower filesystem. For example, suppose a malicious user tries to
delete /etc/passwd, but the normal UNIX permission checks prevent it. An
administrator might want to log such an action (using syslogd) as follows:

if (err == -EACCES &&
 strcmp(dentry->d_name.name,
 "passwd") == 0)
 printk("uid %d tried to delete passwd",
 current->fsuid);

where current is a global variable that always points to the currently executing
task (process), and ->fsuid is the effective UID of that process, for use by
filesystems.

These examples and those that follow have been simplified somewhat to save
space and to convey their essence. For example, the d_name.name component
is not null terminated, so memcmp will have to be used with the proper length;
or, to check that the file referred to by the dentry is indeed the real /etc/
passwd, the code has to check that the filesystem is the root filesystem or
compare against the absolute pathname, using d_path(). For the complete
examples, tested under 2.4.20, see the FiST home page (www.cs.sunysb.edu/
~ezk/research/fist).

http://www.cs.sunysb.edu/~ezk/research/fist
http://www.cs.sunysb.edu/~ezk/research/fist

Example: Who Watches the Snoopers

UNIX tries to protect files from access by unauthorized users. When a user tries
to open a file to which they do not have access, UNIX promptly returns a
permission-denied error. Some users like to snoop around the files of others,
sometimes looking for files mistakenly left unprotected or trying to guess
names of files that might exist in a searchable-only directory. Unfortunately,
even when those snooping users are unsuccessful, the victims of such
snooping often are unaware it took place.

One of the most common filesystem operations is ->lookup(), which occurs
whenever a system call uses a file's name. The kernel must translate that
(string) name to an actual VFS object, such as an inode, dentry or file. To detect
snooping users, we place the following code in snoopfs_lookup or
snoopfs_permission, right after it calls ->lookup() on the lower filesystem:

if ((err == -EACCES ||
 err == -ENOENT) &&
 dir->i_uid != current->fsuid &&
 current->fsuid != 0)
 printk("snoop uid=%d pid=%d file=%s",
 current->fsuid, current->pid,
 dentry->d_name.name);

Here, we check the return code (err) from the call to the lower ->lookup(). If the
status is EACCES (permission denied) or ENOENT (no such file or directory) and
if the directory's owner (dir->i_uid) is different from that of the user running the
current task (current->fsuid) and the current user is not the superuser (because
root users can do anything), then it prints a descriptive message identifying the
snooping user. This message typically is logged by syslogd.

Example: Encryption Fit for a Caesar

Wrapper technologies are particularly suitable for security-related applications
where wrapping, or monitoring, is often useful. Not surprisingly, the most
popular applications developed from FiST are cryptographic filesystems. In this
example, we demonstrate a simple encryption filesystem that uses the rot13
cipher.

In this filesystem, we want to encrypt all file data using a function (presumably
already written) called rot13 that takes an input buffer, output buffer and their
lengths. However, unlike the previous examples, there is no single method
where you can place the rot13() function to encrypt the file's data. In fact,
manipulating file data in any filesystem is rather complex because it involves
multiple methods, as well as two forms of accessing file's data, the read and
write system calls, which can work at any file offset, and mmap, which works on
whole pages. To make life easier for stackable filesystem developers, Wrapfs
consolidates all of these methods into two simple calls: one to encode file data

and one to decode file data, both working on whole page-aligned data pages
(for example, 4KB on IA-32 systems). Using the Wrapfs template, the only code
you have to write to produce a rot13-based encryption filesystem looks like the
following:

int
encode_block(void *in, void *out, int len)
{
 rot13(in, out, len);
 return len;
}
int
decode_block(void *in, void *out, int len)
{
 rot13(in, out, len);
 return len;
}

Wrapfs already contains all the complex code that handles mixed reads, writes
and memory-mapped operations. Wrapfs makes calls to encode_block to
encrypt a data page and to decode_block to decrypt a data page (they are
identical in this example).

Of course, rot13 is hardly a practical cipher, but given this simple example, you
can build much stronger cryptographic filesystems. Following this, we recently
have built a powerful cryptographic filesystem called NCryptfs (a successor to
Cryptfs). NCryptfs supports multiple ciphers; multiple keys per user, process or
group; multiple authentication schemes; key timeouts and revocation;
delegated privileges; and more—all with a negligible performance overhead.

Wrapfs also supports manipulating filenames using two additional routines to
encode and decode filenames. One thing to watch out for when encrypting
filenames is that filenames must remain valid after encryption. In other words,
they cannot contain nulls or “/” characters. A common solution is to uuencode
the file's name after encryption.

Example: Extending New Functionality to User Applications

In the wrapfs_unlink example, we suggested that instead of deleting a file, you
could rename it, thus saving a single backup of deleted files. Suppose we call
this filesystem unrmfs, in which deleted files are instead renamed from their
original name F to F.unrm. It might be annoying if all of these .unrm files
started appearing in your directory, especially if you're expecting nothing there.
Moreover, this kind of functionality also could be used to fool attackers who try
to delete log files that may be used to track their actions. To achieve this,
however, the .unrm files must not be visible or accessible to users by default.

To hide certain files in a filesystem, you have to do two things. First, prevent the
file from showing up in ->readdir(). This is done by writing code in wrapfs_filldir
that checks each filename passed to ->filldir() and returning NULL for those files

you do not want listed. Second, prevent users from directly looking up the file
by its name; this is done by checking for .unrm files in the beginning of
wrapfs_lookup.

Of course, hiding those files from all users isn't very useful. Legitimate users
must be able to access those files under certain conditions. A simple approach
might be to check the UID of the calling process and to hide the .unrm files only
from certain users. A better approach would be to use the mother of all system
calls, ioctl. In Wrapfs, you can define as many new ioctls as you like, and then
write small user-level programs to use those ioctls. This is, for example, the
mechanism we use in encryption filesystems for a user-level tool to pass a
user's cipher key to the kernel.

For our unrmfs, you could write a restore ioctl that takes a file's name, F, checks
whether the file F.unrm exists and then renames F.unrm back to F, effectively
unhiding it from unrmfs. The following example shows a sketch of this code:

/* len: length of source file */
newname = kmalloc(len+6, GFP_KERNEL);
strncpy_from_user(newname, ioctl_arg, len);
strcat(newname, ".unrm");
lower_dir = get_lower_inode(dir);
src = lookup_one_len(lower_dir, newname);
if (IS_ERR(src))
 return PTR_ERR(src);
dst = lookup_one_len(lower_dir, name);
vfs_rename(lower_dir, src, lower_dir, dst);

Conclusion

Filesystem development need not be difficult. Using stackable filesystems, you
can create new, useful and efficient filesystems quickly—all without changing
kernels or existing filesystems. The examples in this article hopefully
demonstrate the power of stacking, from which you gradually can build more
complex filesystems. You can get the FiST software, documentation and many
more examples from www.cs.sunysb.edu/~ezk/research/fist. Happy stacking.

email: ezk@cs.sunysb.edu

Erez Zadok (ezk@cs.stonybrook.edu) is on the Computer Science faculty at
Stony Brook University, the author of Linux NFS and Automounter
Administration (Sybex, 2001), the creator and maintainer of the FiST stackable
templates system and the primary maintainer of the Am-utils (aka, Amd)

http://www.cs.sunysb.edu/~ezk/research/fist
mailto:ezk@cs.sunysb.edu
mailto:ezk@cs.stonybrook.edu

automounter. Erez conducts operating systems research with a focus on
filesystems, security and networking.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Introducing Plone

Reuven M. Lerner

Issue #109, May 2003

Is Plone the killer app that will bring Zope-based content management to the
masses?

One of the biggest reasons for the success of the Apple II computer in the late
1970s was not a product of Apple Computer, Inc. Rather, the first spreadsheet,
VisiCalc, written by Dan Bricklin and Bob Frankston, helped propel sales of the
Apple II. VisiCalc was a revolutionary product, and it worked only on Apple
computers. Businesses everywhere began to buy Apple computers, simply so
they could have VisiCalc.

It turns out that Bricklin and Frankston hadn't invented only the spreadsheet.
They also had invented the killer app—an application that makes a platform so
compelling, people adopt the platform for that one product. Every platform
vendor hopes someone will produce a killer app for its product, driving up sales
of the platform technology as more and more people want it for themselves.
Things are not much different in the Open Source world, although different
motivators exist. For example, many people have adopted Linux in order to use
Apache or Python to work with Zope.

The latest example of a killer app in the Open Source world is Plone, a content
management system (CMS) written on top of Zope by Alexander Limi, Alan
Runyan and Vidar Andersen. Plone has become an increasingly prominent
piece of software in recent months and has brought many people into the Zope
community. And although many Plone users seem to stay within that world and
don't venture into the depths of the Zope server, Plone may well be the killer
app for Zope. If true, this would be a fascinating trend, given how Zope has long
been considered the killer app for the Python language.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

What Is Plone?

Plone is a simple CMS that allows a site administrator to grant different
privileges to different users. All users can read publicly available content. Some
users are allowed to enter new content, and other users are allowed to publish
that content to the general public. Indeed, the distinction between available
and published content is what most distinguishes a CMS from a run-of-the-mill
web site.

In contrast with a static web site, where files are available to the public as soon
as they exist in the root document directory, a CMS allows you to expose
content selectively. Moreover, a CMS allows you to retract previously published
content. So if your site publishes a news story that turns out to be false, you
can remove it from the public's view without actually having to remove any
files. A log of when the story was written, published and retracted, along with
who performed each action and the reason why, is available to site
administrators at all times.

Plone is not designed to be the be-all and end-all of content management
systems. Rather, it is meant to be used on small- and medium-sized web sites
whose administrators want to provide a variety of useful features, prefer a nice
user interface and need the ability to customize the site's look and feel to a
certain degree.

Plone itself is implemented as a number of different Zope products, where
each product is actually an object class that can be instantiated multiple times.
However, Plone is not implemented directly in Zope but within Zope's content
management framework (CMF), a set of objects and APIs meant to make it easy
to create your own CMS.

Plone 1.0 was released prior to this writing, in early 2003, and depends on CMF
v1.3, which was released in mid-2002. Just as a desktop application uses many
of the facilities that the underlying operating system provides, Plone, or any
CMF-based CMS, uses the capabilities that the CMF provides. Plone sites thus
offer full-text search and the ability for community members to comment on
any content object. As the CMF improves and offers more services, I expect
Plone also will improve.

Installing Plone

If you already are running Zope, installing Plone is quite easy. Remember that
every Zope product must be installed in the lib/python/Products directory
within your Zope directory. In addition, Zope must be restarted either manually
or from the web-based control panel in order for newly installed products to be
seen and registered.

Before you can install Plone, you must install the latest version of the CMF.
Retrieve CMF-1.3 from cmf.zope.org, which comes as a gzipped tar file. I put the
tar file in /tmp and installed it as follows:

cd $ZOPE/lib/python/Products
tar -zxvf /tmp/CMF-1.3.tar.gz

The CMF-1.3 directory created in lib/python/Products contains a number of
CMF-related products that Zope needs to locate at startup. We therefore create
a number of symbolic links to the product directories:

ln CMF-1.3/CMFCore .
ln CMF-1.3/CMFCalendar .
ln CMF-1.3/CMFDefault .
ln CMF-1.3/CMFTopic .

Now that the CMF is installed, we can install Plone as well. Retrieve a tar file of
Plone from www.plone.org, place it in /tmp and expand it:

cd $ZOPE/lib/python/Products
tar -zxvf /tmp/CMFPlone-1.0.tar.gz

As with the core CMF product, you must create several symbolic links in the
Products directory, so Zope can recognize them when it starts up:

ln -s CMFPlone-1.0/CMFPlone .
ln -s CMFPlone-1.0/DCWorkflow .
ln -s CMFPlone-1.0/Formulator .

If you are using a version of Zope prior to 2.6.x, you might need to create a
symbolic link from another product to the main Products directory. Check the
Plone instructions to be sure.

Make sure the CMF-1.3 and CMFPlone directories and their contents are owned
by the same user as the one as which Zope runs. This is normally a user named
www or zope. Running Zope as nobody, which used to be considered a safe
option, is no longer recommended. If the appropriate user does not own the
files, you could encounter some odd ownership and permission problems.

Now you have installed everything you need to create a site managed by Plone.
Start Zope, log in as a user with administrative privileges and you're ready to
go.

Creating a Plone Site

Creating a Plone site is extremely easy from within the web-based Zope
management interface. From the add product menu, choose the Plone site. You
will be prompted to enter several pieces of information:

• the ID of the site, which will be part of the URL;

http://cmf.zope.org
http://www.plone.org

• the title of the site, which will appear at the top of each page;
• whether the site should have its own user folder or should inherit users

from the surrounding Zope site;
• a description of the site; and
• the type of site you're creating (for now, leave it at the default Plone).

When Zope finishes creating a new instance of the Plone site, the large pane in
the Zope management interface changes dramatically. An introductory
message appears in the middle, a toolbar slides across the top, and
information, including a calendar, shows up in rectangles along the left and
right sides.

The interface for modifying a Plone site is significantly different from the
standard Zope interface. Whereas Zope normally displays the same screens for
all users and only presents the management interface when the /manage
method call is tacked onto a URL, Plone modifies its output according to the
current user's permissions. So although guests can navigate only through the
site's content, administrators are shown tabs, such as view, edit, properties and
state, and can see all items on the site, including those not yet published.

Luckily, the Plone user interface is fairly straightforward for administrators. To
modify the contents of a page, click on the edit tab. You can then edit the
content, including its URL and summary information, using your web browser.
The summary information appears in search results. Plone uses JavaScript to
make the user interface easier to understand for nontechnical users; for
example, clicking on any HTML widget, such as a text area or radio button, in
the Plone editing interface brings up a tooltip-like description of what should be
inserted.

Content added or modified using the web-based Plone interface can be in plain
text, in HTML or in Zope's structured text format, which uses punctuation and
indentation as formatting mechanisms. I prefer to use structured text as often
as possible, using HTML only when I want to format a page in a way that
structured text doesn't allow.

Surrounding the main document on a page are multiple portlets, accessories
that add to a site's content. Plone comes with several portlets by default,
including a list of news stories, a list of events, a calendar that displays today's
date and highlights any events during the current month and a list of relevant
documents on the current site.

To add a new document, first move to the contents view by clicking on that link
in the navigation portlet. This produces a list of documents in the current
folder. You then can select a new content type from the add new item in the

upper-left corner. It's important to realize a new document is created as soon
as you click on add new document; following that, you are modifying its
properties and content.

By default, Plone allows you to create a number of different content types:

• Folders allow you to structure your site with a hierarchy. Just as a disk,
static web site or Zope site contains files in folders, Plone sites can contain
folders. The title of each published folder is displayed in the navigation
portlet.

• Documents are the most common item on Plone sites and can be
formatted in HTML, structured text or plain text. Most of the time, you
probably will want to create a new document.

• Images can be in nearly any format, including JPEG, PNG and GIF.
• Files are items you want users to be able to view or download but that

don't have a MIME content type that Plone can work with easily. Some
examples are QuickTime movies, audio clips and Microsoft Office
documents.

• Events are short documents with a starting and ending date and are
highlighted in the calendar portlet.

• News items are short documents displayed in the news portlet. This is a
good and easy way to publish press releases, for example.

Plone also comes with links, which are URLs of interest to the outside world,
and topics, which are predefined searches within the site. An increasing
number of other content types are emerging for Plone, such as a weblog and a
photo album.

Publishing Documents

When you create a new piece of content in Plone, it is in the visible state by
default. This means that if people know the URL, they can get to your document
with their web browsers. The content does not appear, however, in searches or
in the navigation portlet.

To publish content, click on the state tab at the top of the page. (From the
contents view, you can publish multiple pieces of content simultaneously with
the state button at the bottom of the page.) This brings you to a page that asks
when the content should first be published, when it should expire and any
comments you wish to make about the decision to publish the document. The
dates you enter are the final arbiter, meaning that a published document will
be visible only between its starting and ending dates. This allows you to enter
content days or weeks before it should be exposed to the general public,
without having to change its state to published at the appropriate time.

Once published, a document appears in full-text searches. It also is visible
within any folder that lacks a default index_html document.

One of my favorite Plone features is properties. Each document can be
assigned one or more properties by the properties management tab at the top
of the screen. When a user views the content, the related portlet lists all of the
other documents on the site that share one or more properties with the
current one. This allows site visitors to find easily other content that might
interest them.

Conclusion

Zope is a powerful application server, and the CMF is a powerful toolkit for
creating a CMS. But, given the steep learning curve associated with both of
them, it is possible that Plone may be the killer app for Zope, bringing new
people into the world of Zope through great functionality that is easy to install,
configure and manage.

Next month, we will take a closer look at Plone, examining ways we can modify
what is displayed, including changing the site's look and feel.

Resources

Reuven M. Lerner (reuven@lerner.co.il) is a consultant specializing in open-
source web/database technologies. He and his wife, Shira, recently celebrated
the birth of their second daughter, Shikma Bruria. Reuven's book Core Perl was
published by Prentice Hall in early 2002, and a second book about open-source
web technologies will be published by Apress in 2003.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6639s1.html
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Battles inside the Computer

Marcel Gagné

Issue #109, May 2003

You won't look like Jeff Bridges, but do you get to wear the funky costumes?

What do you mean, “Who is inside the computer?” No one is inside the
computer, François. Ah, I see. I think you misunderstand the concept of this
month's focus, “Kernel Internals”. Why, the whole notion of there being
anything other than bits and bytes floating in the Linux kernel is pure science
fiction, mon ami. Qu'est-ce que tu dis? No, of course not. Inside the computer
isn't a real place, at least not in this world. Still...

Quoi? Sorry, mon ami. I was just remembering a movie from years ago, where
there really was an “inside” the computer, and programs fought for their users
against the MCP, the master control program. François, what are you looking
at?

Ah, mes amis. Welcome to Chez Marcel, home of fine Linux fare and excellent
wine. Please sit and I will have François fetch the wine. We have some
incredible French Canadian tourtière to serve tonight as well. François, run to
the cellar and fetch the wine. The 1997 Napa Valley Cabernet Sauvignon is
drinking exceptionally well.

It is good to see you, mes amis. François had this strange notion that kernel
internals implied something was going on inside his Linux system that involved
real people. That made me think of the 1982 Disney film called Tron. Inside the
computer, programs are engaged in gladiatorial battles, fighting for their users.
One of the deadly sports in this virtual world was a lightcycle race. Contestants
rode a kind of motorcycle that left a wall of light in its wake. The cycles
themselves can't stop. The only thing you can do is ride, avoiding your
opponents' walls while trying to get them to crash into yours. The last program
standing wins.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

François, you have returned. Please pour for our guests, then head back to the
kitchen for that tourtière. As I was saying, mes amis, as dated as Tron appears
in today's world, the lightcycle battle was the inspiration for various arcade
games based on the simple concept of an ever-growing light trail that must be
avoided at all costs. That inspiration continues today and is represented in
several open-source projects.

Let's start with a lightcycle game you already may have on your system. As part
of the KDE games package, you'll find Matthias Kiefer's KTron, a simple but
highly functional lightcycle game. You'll find it in your K menu under arcade
games, and the command name is ktron. When the game starts, you'll see two
squares near the center of the screen, one red and one blue. To play, press
either your left or right cursor and the race begins instantly (Figure 1).

Figure 1. KTron: KDE's Own Lightcycle Game

In order to change game play, click Settings on the menubar and several
modifications are at your disposal. For instance, if the game is a little fast for
you, tone down the velocity. Or, speed it up if you are falling asleep at the
lightcycle's wheel. You also can change the size of the cycle's trail or modify the
default colors.

This little game is actually a lot of fun, particularly if you change the size of the
arena, but really to get the feel of a lightcycle battle, you must enter the three-
dimensional world. That, mes amis, is how you get into the computer. You will
need a 3-D accelerated video card and OpenGL or Mesa 3-D video libraries.

As far as the card itself is concerned, many are extremely well supported under
Linux. Unfortunately, even when the card is supported, the manufacturer of the

card may not license the accelerated driver for inclusion with the Linux
distributions themselves. That doesn't mean they aren't available, but you may
have to visit the vendor's site and download them. With some cards, full 3-D
acceleration is directly supported under XFree86. So, how can you tell if you are
ready to go? A quick way to test for the presence of 3-D support is with the
following command:

glxinfo | grep rendering

The system should respond with this:

direct rendering: Yes

Another fun little test you can perform involves running a program called gears

(part of the Mesa-demos package). To do this, simply type the command gears

at a shell prompt. Your hard work will be rewarded with three gears spinning
on your screen (Figure 2).

Figure 2. The 3-D gears Demo from Mesa

Do not get too distracted by the spinning gears. Have another sip of your wine,
then look back at your terminal window. You will see some statistics regarding
the performance of your 3-D hardware:

1778 frames in 5.001 seconds = 355.529 FPS

That result comes from my test system, which has an NVIDIA GeForce2 card.
This is actually a reasonably impressive hardware performance. In contrast, my
little notebook, which suffers from a complete lack of accelerated hardware,
yields this result:

312 frames in 5.004 seconds = 62.350 FPS

Not having acceleration for your card doesn't stop the program from working; it
simply will run very, very slowly. Now that we've got that out of the way, mes
amis, let us return to the world of lightcycles in the third dimension with
Manuel Moos' Armagetron (armagetron.sourceforge.net). As Manuel's home
page suggests, think Armageddon with a “tr” instead of that double “d”.
Precompiled binaries were easy to find, and the source, of course, is there as
well.

The first time I tried the game, I immediately crashed into the wall. This was my
experience the first three times or so, until I realized that perhaps I needed to
configure my keys for steering. Navigate the menus to Player settings
(whichever player number you happen to be), then change the Input
Configuration. Cursor down to turn left and press Enter. You'll be asked to
press the key you wish to use for a left turn. I know it sounds crazy, but I chose
the left cursor key. Repeat the process for the right turn and anything else you
may wish to use in combat, such as instant chat phrases so you can taunt other
players with a single keystroke. Exit that menu, then the one before it until you
return to the main menu.

Figure 3. A 3-D Lightcycle Race, Courtesy of Armagetron

Now, from the Game menu, select Start Game. Armagetron is a great lightcycle
game with an omnipresent overhead camera that follows your moves and
provides some dizzying perspective changes on those instant, 90-degree turns
(Figure 3). Armagetron also is network playable with up to 16 computers, each
running four players.

Armagetron is wonderfully addictive and, as a result, comes with an absolutely
essential feature: a Boss key. In other words, if you happen to be playing a

http://armagetron.sourceforge.net

game of Armagetron over the network and the boss approaches, press Shift-
Esc, and the game ends and vanishes instantly.

Armagetron is great, but for something approaching photo-realism, we have
Andreas Umbach's GLTron. As you might expect, mes amis, this realism comes
at a price in terms of hardware and performance, but if you have the machine,
you will not be disappointed. You should have no problem finding precompiled
binaries (RPMs are available on rpmfind.net), but the source is always available.
You can pick it up at www.gltron.org.

GLTron is fast-paced (assuming proper 3-D hardware) with impressive graphics
and a play mode that is sure to raise your heart rate.

There are three main configuration menus for GLTron (game, video and audio),
and some of these make it possible to change the game experience
dramatically. For instance, you can run GLTron in full-screen mode as well as
windowed. Artpacks also are included in the package so you can alter the look
and feel. My favorite is still the default (Figure 4), but I am somewhat fond of
the Metaltron artpack.

Figure 4. GLTron--So Good, You'll Feel You're in the Computer

What I like most about GLTron is the ability to pan with the mouse to create
almost any camera view. Press the spacebar to pause the game, then tilt or
rotate your point of view. If you really want to hone your skills in this 3-D world,
try changing your point of view relative to the arena and restart the race.
Controlling your lightcycle from the side is an altogether different experience
than it is from above or behind. Try pressing F10 to change the camera angle
and tracking. I find the behind-camera viewpoint particularly interesting. It

http://rpmfind.net
http://www.gltron.org

changes your view so that you seem to be riding in the lightcycle itself—very
heady.

By default, a small 2-D map floats above the screen. If you feel particularly
cocky, try turning the map off.

In many ways, GLTron is the most polished of the three games mentioned here,
but it doesn't have the network play of Armagetron. On the other hand, as
simple as KTron is, you can play it on any system—accelerated hardware is not
necessary.

So, mes amis, as you can see, all your workstations are set up with the three
games as well as being fully networked. Perhaps you would like another glass
of wine before entering the arena? Or maybe an espresso? François will be
happy to provide you with either.

Mon Dieu, has the time passed so quickly? As I cannot connect to your systems
and pour you a glass of wine, I must attend to it here before François and I
close the restaurant for the night. François, would you be so kind as to refill our
guests' glasses a final time? Until next time, mes amis, let us all drink to one
another's health. A votre santé! Bon appétit!

Resources

Marcel Gagné lives in Mississauga, Ontario. He is the author of Linux System
Administration: A User's Guide (ISBN 0-201-71934-7), published by Addison-
Wesley (and is currently at work on his next book). He can be reached via e-mail
at mggagne@salmar.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6638s1.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Using Firewall Builder, Part I

Mick Bauer

Issue #109, May 2003

Use one easy GUI application to build and deploy policies for all your firewalls
and servers.

Linux 2.4's Netfilter firewall code and its front end, iptables, deserve the praise
and popularity they've garnered. They've brought Linux firewalls to the same
level as commercial stateful packet-filtering firewalls, from the standpoints of
functionality, intelligence and security.

Only one thing has been lacking from the Netfilter experience: user-
friendliness. A good firewall GUI isn't merely a crutch to be used by
nontechnical people. Even the most pointy-headed of us tend to work faster
and make fewer mistakes in our firewall policies if we can construct rules with
the aid of visual cues and reminders. There's little value in focusing on iptables'
command syntax at the expense of the actual security policy your firewall
needs to enforce.

Firewall Builder (Figure 1) is a good firewall GUI indeed. It lets you define host,
network and service objects that can be used and reused in as many different
firewall rulesets as you like; it displays your rules in an instinctive and clear way;
and because it's intentionally OS-agnostic, you can use Firewall Builder to
generate rulesets not only for Netfilter/iptables, but also for FreeBSD's ipfilter,
OpenBSD's pf and even Cisco PIX firewalls.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f1.large.jpg

Figure 1. Firewall Builder in Action

This issue and next I'll show you how to obtain and install Firewall Builder, and
then I'll explain how to use it to build iptables policies of your own easily and
instinctively. To begin, we focus on installing Firewall Builder and on populating
its Objects database; next month we'll cover policy construction in-depth.

Where to Install Firewall Builder

First, a few words on where to install and run Firewall Builder. I don't think it's a
good idea to run Firewall Builder on an actual firewall or on any other
hardened, publicly accessible host, called a bastion host. In short, I don't think
you should run the X Window System on such hosts.

Instead, you should run Firewall Builder on your normal day-to-day
workstation. Then, copy the firewall scripts you build to the host you actually
wish to configure, using scp or some other secure means. Firewall Builder is
designed to be used in this way.

On the other hand, if you intend to use Firewall Builder to create Netfilter
scripts for local protection of one particular host, such as a Linux 2.4-based web
server, perhaps it's okay to run Firewall Builder directly on the host on which its
scripts will be installed. But, make sure X11 is installed on the host and the host
itself is behind a proper firewall.

The important point is you don't need to run Firewall Builder on each host you
want configured. Therefore, you shouldn't run it on any host on which you
wouldn't otherwise run the X Window System. A single host running Firewall

https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f1.large.jpg

Builder can generate scripts for as many different hosts as you like. We'll see
how this is possible shortly.

Getting and Installing Firewall Builder

Naturally, the Firewall Builder Project has its own home page, where you can
obtain the latest software releases and documents: www.fwbuilder.org. If
anything I say here is different from something you read there, I defer to that
site. Firewall Builder's on-line installation instructions are clear and accurate,
and they may change between the time I wrote this article and the time it
actually is printed.

Debian

I'll start with the easiest case. If you run Debian 3.0, you can install Firewall
Builder directly from your Debian installation source; Debian has its own
officially supported deb package, called fwbuilder. Among other things, this
package depends on the Debian packages libfwbuilder0, fwbuilder-iptables,
libgtk1.2, libgtkmm1.2, libxslt1, libxml2 and libsnmp4.2.

I'll skip the complete list of dependencies, though. If you use apt-get to install
fwbuilder, apt-get will identify and install all required packages for you. I also
recommend installing Debian's fwbuilder-doc package; it is optional (and
therefore won't be installed automatically by apt-get in order to satisfy any
dependencies) but contains comprehensive and useful documentation.

Red Hat

As of Red Hat 8.0 (the latest Red Hat release at the time of this writing), Firewall
Builder isn't yet an official part of Red Hat Linux. However, the Firewall Builder
team provides RPM files for several Red Hat releases; see the Firewall Builder
download site at sourceforge.net/project/showfiles.php?group_id=5314.

You'll need the fwbuilder and libfwbuilder packages, plus at least one of
fwbuilder-ipt, fwbuilder-ipf or fwbuilder-pf, depending on whether you create
rulesets for Linux Netfilter/iptables, FreeBSD ipfilter or OpenBSD pf,
respectively. You can install more than one of these last three if you wish.
Because Firewall Builder's ultimate output is an ASCII script, using a Linux
system to generate firewall rules for other platforms is not a problem.

Before installing the Firewall Builder packages, the following standard Red Hat
packages must be present: bind-utils, gdk-pixbuf, glib, glibc, gtk+, gtkmm,
libfwbuilder, libsigc++, libstdc++, libxml2, libxslt, openssl-0.9.6b, ucd-snmp and
XFree86-libs.

http://www.fwbuilder.org
http://sourceforge.net/project/showfiles.php?group_id=5314

In addition, you'll need gtkmm (the GIMP Tool Kit Minus Minus), which contains
the C++ bindings for GTK+. This package is part of Ximian GNOME, but you also
can download it from www.freshrpms.net.

SuSE

Like Red Hat, SuSE has not yet incorporated Firewall Builder into its official
release. SuSE 8.1 RPMs (albeit unofficial contributed ones) are available from
the Firewall Builder download page (sourceforge.net/project/showfiles.php?
group_id=5314).

You'll need the fwbuilder and libfwbuilder packages, plus one or more of
fwbuilder-ipt, fwbuilder-ipf or fwbuilder-pf. You'll also need to have installed
these standard SuSE packages: gcc, gdk_pixbuf, glib, glibc-2.2.4, gtk, gtkmm,
libsigc++, libstdc++, libxml2, libxslt, libz, openssl-0.9.6b, ucdsnmp and xshared.

Creating Objects

Once its packages are installed, you're ready to run Firewall Builder. There's
only one command to remember: fwbuilder. You must have the X Window
System running to run this command. You don't need to be root, though; in
fact, I recommend against it, because you always should avoid needlessly doing
things as root.

Once the fwbuilder window is up, you can start defining objects (Figure 2). The
whole point of Firewall Builder is to be able to write rules using reusable, drag-
and-drop objects, so obviously, objects must exist before rules may be written.
Even Firewall Builder's automatic-policy-generating druids require that objects
already exist.

You can use objects to represent hosts, networks (identified by IP address and
subnet mask), address ranges, TCP/IP services, firewalls (both multi-homed
firewalls proper and bastion hosts), time-ranges and groups of other objects.
You may define as many or as few objects as you think you'll use in your
rulesets. At a minimum, you'll need a firewall object and at least one network or
host object. Predefined service objects are provided for many popular TCP/IP
services.

Host Objects

Objects are created from the dialogs in Firewall Builder's Insert menu. Figure 2
shows the Insert host dialog for creating a host object. A host object's defining
characteristic for rule-creating purposes is its IP address. If you wish to write
rules that match hosts by MAC/Ethernet address, you can define that too. As
you can see, you may enter the IP address manually or by DNS lookup. The

http://www.freshrpms.net
http://sourceforge.net/project/showfiles.php?group_id=5314
http://sourceforge.net/project/showfiles.php?group_id=5314

latter feature is handy, but it works only for hosts whose names are resolvable
by the system on which Firewall Builder is running.

Figure 2. Insert Host Dialog

Network Objects

Figure 3 shows the Insert network dialog. Unlike Insert host, which pops up a
separate window, Insert network simply opens a blank New object form in the
right-hand portion of the main window. This dialog actually is simpler than the
Insert host dialog; all you need to enter are the network's IP address and
subnet mask, a name for the network object and, optionally, a comment.

Figure 3. Insert Network Dialog

https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f3.large.jpg

Firewall Objects

The most complicated object by far is the firewall object. Initial setup isn't too
hairy in itself; simply define the firewall's interface or interfaces by IP address
and subnet mask. But once the firewall object has been added, and it appears
in the list of user-defined objects on the left-hand side of the main fwbuilder
window, click on its icon. Five pages (tabs) of information should appear on the
right-hand side of the window (Figure 4).

Figure 4. Firewall Properties

On the General screen, we see the hostname entered in when the firewall
object was created. It's important, though, to select appropriate Host OS and
Platform options, so Firewall Builder will know which of its compiler engines to
use when converting policies to firewall scripts for this firewall.

The SysInfo screen applies only to SNMP data (see Sidebar). The Compile/Install
screen is where you can set up automatic installation of your firewall policies. If
you intend to install them manually, you can leave this screen alone. Someday,
hopefully soon, Firewall Builder will support the automatic transfer and
installation of firewall scripts using SSL. As of this writing, however, the fwbd
dæmon that must run on a target firewall for this method to work has not been
released.

If you leave the Compile/Install screen's Installer option at its default of fwbd,
even though this feature isn't yet supported, nothing bad will happen; compiled
firewall rules still are saved to your home directory. The Install option in the
Rules menu will be grayed out, though. If, on the other hand, you set Installer to
Install Script, you then can specify the path to a custom script in the Policy

https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f4.large.jpg

Install Script field, with optional command-line parameters below. The custom
script will be executed when you select Rules®Install after compiling a policy.

This method is a handy way to script, for example, an scp command that
securely copies your policies to their target firewalls. Sample installation scripts,
notably fwb_install, are available under contrib at the Firewall Builder download
site (sourceforge.net/project/showfiles.php?group_id=5314).

Regardless of what you set Installer to, Firewall Builder writes the script it
compiles for this firewall to a local ASCII file with the same name as the firewall
object and a suffix of .fw. For example, scripts generated for the firewall Trillian
in Figure 4 are named trillian.fw.

Continuing with Firewall's object properties, the Firewall tab is used to
configure options specific to the platform you selected in the General screen, in
our case Netfilter/iptables-specific options (Figure 5). The defaults here work
fine for many if not most users, but a couple of the options are worth
discussing.

Figure 5. Platform-Specific Firewall Properties

In the Global Logging Parameters section you can control how Firewall Builder
writes log entries. The default Log Level of 6: Info is okay. Personally, I log only
dropped and rejected packets, so I like to bump this up to 4: Warning.

In the Options section of the Firewall screen you may wish to select Assume
firewall object is part of Any. The default is for the built-in Source/Destination

http://sourceforge.net/project/showfiles.php?group_id=5314
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f5.large.jpg

object Any to be interpreted as “Any host except the firewall”. This is not
atypical in firewall policy builders, but it can cause some surprising behaviors.

For example, if the last rule in your policy is a cleanup rule that sets
source=any, destination=any, service=any, action=drop and logging=on, you'd
expect any attempted connections to the firewall not matching previous rules
to be logged and dropped, right? Indeed, they will be dropped, but not because
of this rule. They'll be dropped by the INPUT chain's default policy, which
Firewall Builder always sets to DROP. This example cleanup rule is triggered
only by attempted connections through the firewall. As the firewall itself is not
assumed to be part of Any, your cleanup rule is implemented only in the
FORWARD chain, not in the INPUT or OUTPUT chains.

Selecting Assume firewall object as part of Any reverses this behavior, and it
causes such a cleanup rule to behave the way you'd expect. However, it may
complicate other things, such as anti-spoofing rules specific to firewall
interfaces. In short, it's a trade-off. My own preference is to leave this option
deselected. Then, I either tweak my Firewall Builder scripts to include the log
and drop lines to at least the INPUT chain, or I add an extra Firewall input log
and drop rule to my policy.

If in doubt, test and tinker with this setting. You can use the Log all dropped
packets in the Global Logging Parameters section, but it requires your firewall
to have had Netfilter compiled with the Patch-O-Matic Dropped Table patch.
This may not be the case if you installed a kernel provided with your Linux
distribution.

The last screen of Firewall object properties is Network. This contains settings
specific to the Host OS you specified in the General screen. These options
directly alter your kernel's behavior; if that frightens you, ignore this screen. But
if your firewall is a full-blown, entire-network-protecting firewall rather than
simply a hardened host, make sure you set Packet Forwarding to On.

Loopback Interfaces

Believe it or not, even after all this work we're not done configuring the firewall
object. In Figure 4 you may have noticed that in the hierarchical view of objects
on the left-hand side of the window, the firewall Trillian has two interfaces, eth0
and lo. The eth0 subsection was created automatically when I ran the Insert
firewall dialog. lo, which represents Trillian's loopback interface, had to be
created manually. It's a little odd that its creation doesn't happen automatically.
Every firewall, whether a multihomed host or a bastion host, needs rules that
allow its loopback interfaces free rein (so local processes aren't interrupted).

To add a loopback interface manually, select your firewall object's icon in the
object list, pull down the Insert menu above and select Interface. The Interface
option is grayed-out unless you've selected a Host or Firewall object. A new
interface icon appears below your firewall object, and the new interface's
properties are displayed on the right. Enter the interface's name into Name (for
example, lo), and deselect This Interface is External (insecure). The latter option
should be checked only for your external interface and DMZ interface objects.

Next, while the new interface's object is still selected, pull down the Insert
menu again and select Address. Now an address sub-object appears below
your new interface, and its properties are displayed on the right (Figure 6).
Enter a name, an IP address of 127.0.0.1 and a netmask of 255.0.0.0 (the latter
will be filled in automatically, actually). In some circumstances, systems have
more than one loopback interface, in which case the address may vary
(127.0.0.2, etc.). Chances are, though, you have only one and its IP is 127.0.0.1.
When in doubt, do an ifconfig -a on your firewall.

Figure 6. Adding a Loopback Interface's Address

Once you've defined all your objects, or at least enough to start writing rules,
save them by pulling down the File menu and selecting Save. You'll be
prompted to provide a filename with a suffix of .xml in your home directory.
Some scripts expect objects to be named objects.xml and to be stored in ~, but
this is user-configurable. In other words, name your objects file whatever you
like and put it wherever you want. Remember what and where these are if you
need to tweak fwb_install or another policy installation script.

Next Steps, Next Month

I'll leave it to you to create additional Host, Network and Firewall objects
pertinent to your environment. Also, I've skipped Network Range and Time
objects, both of which are easy to understand and use—you can figure these
out by playing with them or by referring to the documentation at
www.fwbuilder.org. Next month, we'll use all these objects to build some

https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6625f6.large.jpg
http://www.fwbuilder.org

policies. In the meantime, I hope you've learned enough to get started and to
start exploring Firewall Builder on your own. Have fun!

Resources

Mick Bauer (mick@visi.com) is a network security consultant for Upstream
Solutions, Inc., based in Minneapolis, Minnesota. He is the author of the O'Reilly
book Building Secure Servers with Linux, composer of the “Network
Engineering Polka” and a proud parent (of children).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/109/6625s1.html
mailto:mick@visi.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Closing the Chasm

Doc Searls

Issue #109, May 2003

Linux already has bridged the product gap between early adoption and the
mainstream. Now the big challenge is cultural.

In most big bookstores, the books you see first don't last. They're out on the
front tables for you to sample. If they sell well, there's no guarantee they'll stay
on the shelves for months, much less years. Even the biggest bookstores don't
have enough room to store a fraction of the new books that wash in and out,
like foam on a tide.

Those that stay are part of the culture. You expect to find them at a bookstore
because their appeal endures. With fiction, the appeal may last years, decades
or centuries. Nonfiction books, however, bear the burden of relevance. Among
the nonfiction categories, business books don't age as rapidly as sports and
travel titles, unless they're about technology. Books about technology trends
and companies tend to age as well as last week's meat.

When I look at my bookshelves, I wince at titles like The Big Tech Score and
Managing Inter@ctivity. It's not that any of these books contain bad
information; they simply speak of a time that is going or gone.

One exception is the work of Geoffrey A. Moore. Although his books are packed
with examples from companies whose names are no longer in use, his insights
about technology adoption remain relevant, especially (and ironically) for Linux.
In fact, I think Moore's technology adoption model is a handy way to make
sense of Linux's quietly growing success inside large enterprises. It also will be
useful when it is time to grok Linux's inevitable success on desktops as well.

Moore's model is an old one: the adoption curve, which dates back to Everett
M. Rogers' Diffusion of Innovations, first published in 1962 and still going
strong, broken into pieces (Figure 1).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. The Adoption Curve

His main focus is the chasm between early adopters and the early majority. In
Crossing the Chasm (1991) and Inside the Tornado (1995), Moore described the
width of the chasm in terms of cultural opposites. According to Moore, the
techie innovators and visionary early adopters on the left side of the chasm are
radically different from the pragmatic early majority (Table 1).

Table 1. Cultural Opposites [from Inside the Tornado, page 18]

What appeals to both groups is also radically different. Techies and visionaries
care about product qualities such as speed, design, ease of use, price, novel
features and functions, impressive demos and trade-press coverage.
Pragmatists care about reliable solutions, third-party support, de facto
standards, cost of ownership, quality of support and success of colleagues.

Notice something funny? Did Linux skip a generation here? As a product, isn't
Linux almost profoundly pragmatic? And, isn't it strange that what made Linux's
visionaries excited was a roster of mostly pragmatic values?

The graph in Figure 1 isn't Moore's; it's Don Norman's version of Moore's curve.
Dr Norman (www.jnd.org), a scientist whose dozens of books include such
classics as The Design of Everyday Things, The Invisible Computer and Things
That Make Us Smart, is a fan of Moore and his books. About Crossing the
Chasm he says (www.jnd.org/dn.mss/life_cycle_of_techno.html):

The classic marketing book for high-technology
companies, widely read and discussed, but almost
never followed. Why is it so difficult for a high-
technology company to understand that late adopters
of a technology are very, very different from the
technology enthusiasts who made the company
successful? Because the whole culture of the company
is based on its wildly successful teenage years, and
high-tech companies hate to grow up. Immaturity is

https://secure2.linuxjournal.com/ljarchive/LJ/109/6629t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6629t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/6629t1.html
http://www.jnd.org
http://www.jnd.org/dn.mss/life_cycle_of_techno.html

embedded in the culture. Technology is easy to
change. Culture is hard.

But the culture Moore and Norman talk about is on the supply side—it's the
culture of companies who make their living selling technology. It's different with
Linux. “Linux company” has always had an oxymoronic quality. Lately I've begun
to think there never has been such a thing as a “Linux company”. Linux is too
deep, too infrastructural, too free. Yes, you can productize and brand it, just as
Pepsi productizes filtered water and sells it as Aquafina. But, like air and water,
Linux is too elemental to be a product in itself. Here's how Don Norman puts
the distinction:

There is a big difference between infrastructure
products, which I call non-substitutable goods, and
traditional products, substitutable goods. With
traditional goods, a company can survive with a stable,
but non-dominant market share. Coke and Pepsi both
survive. Cereals and soaps have multiple brands. With
infrastructure goods, there can be just one. MS-DOS
won over the Macintosh OS, and that was that. MS-
DOS transitioned to Windows, and the dominance
continued. VHS tape triumphed over Beta. Most
infrastructures are dictated by the government, which
assures agreement to a single standard. When there is
no standard, as in AM stereo or digital cellular options
in the US, there is chaos.

He's right—if we're talking about the present moment in time. But reports are
coming in from rank-and-file infrastructure builders at the world's biggest
technology companies. At FedEx, Boeing, General Electric, Nokia, Sony,
Matsushita, Philips and the rest of them, Linux is becoming the infrastructural
standard. It's not killing off Windows; it's simply supplanting it as infrastructure.
Where Windows persists, it's being repositioned as a “platform” rather than as a
standard. In Don Norman's terms, Linux is becoming non-substitutable while
Windows is becoming substitutable.

When Don Norman wrote that paragraph, DOS/Windows was de facto
infrastructure. What's happened since then is what many in our community
have expected for a very long time: free forms of UNIX eventually will find
adoption as universal infrastructure. Sure enough, today most web servers run
on Linux or BSD. Sony, Matsushita, Philips and a pile of other consumer
electronics giants are codeveloping a free and open embedded Linux distro for
their own future product generations. DOS/Windows, which quietly used to
serve as the OS for countless cash registers and point-of-sale (POS) terminals, is
being replaced rapidly by new models that run on Linux.

In Inside the Tornado, Geoffrey Moore subdivides early adoption into two
stages: The Bowling Alley and The Tornado. The Bowling Alley is “a period of

niche-based adoption in advance of the general marketplace, driven by
compelling customer needs and the willingness of vendors to craft niche-
specific whole products.” The Tornado is “a period of mass-market adoption,
when the general marketplace switches over to the new infrastructure
paradigm.” These are followed by Main Street, “a period of after-market
development when the base infrastructure has been deployed and the goal
now is to flesh out its potential.”

For web servers, database servers, rendering farms, point-of-sale systems and
a variety of other niche categories, Linux has been bowling strikes for several
years now. Now we're moving inside the tornado, big time.

But it's a stealth tornado, because few companies on the supply side (IBM is a
huge exception) even bother to make a big thing about it. The real leadership is
happening on the demand side, among the pragmatists.

Here's Linux. It's lying around looking useful. A lot of technologists know their
way around or can learn it easily. It's free. There's no vendor lock-in. There are
no royalties or other fees to pay. It's extremely useful as building material.
There are lots of tools you can use to build with it, and most of those are free
too. The only problem is PR; it still looks like it's a Visionary Thing.

But that image fits a pattern too. This one is described by Clayton Cristensen in
another classic, The Innovator's Dilemma: When New Technologies Cause Great
Firms to Fail (Harvard Business School Press, 1997). Cristensen says Great Firms
are innovative by nature (witness Microsoft's defensive talk about their right to
innovate), but their innovations are incremental. They improve the proven in
gradual steps; they don't tip over their cash cows—and for very good reasons.

One is dependence on customers and investors as sole resources. Cristensen
says:

While managers think they control the flow of
resources in their firms, in the end it is customers and
investors who dictate how money will be spent
because companies with investment patterns that
don't satisfy their customers don't survive. The
highest-performing companies in fact are those that
are best at killing ideas that their customers don't
want. As a result, these companies find it very difficult
to invest adequate resources in disruptive
technologies—lower-margin opportunities that their
customers don't want—until their customers want
them. And by then it's too late.

Other reasons for avoiding disruptive technologies are “small markets don't
solve the growth needs of large companies” and “markets that don't exist can't
be analysed”. On that last point, Cristensen says:

Because the vast majority of innovations are
sustaining in character, most executives have learned
to manage innovation in a sustaining context, where
analysis and planning were feasible. In dealing with
disruptive technologies leading to new markets,
however, market researchers and business planners
have consistently dismal records. In fact, based upon
evidence from the disk drive, motorcycle, and
microprocessor industries, the only thing we may
know for sure when we read experts' forecasts about
how large emerging markets will become is that they
are wrong.

All disruptive technologies, Cristensen says, are not taken seriously at first. They
look like toys. They seem underpowered. The wrong people are selling and
adopting them. They seem to be missing crucial features and functions. They
don't fit anywhere in current product lines. They're not “standard”. And because
they start out that way, disruptive technologies remain ignored,
underestimated and misunderstood, even while they continuously improve.
That's why customers discover disruptive technology advantages ahead of the
“innovative” vendors whose gradually improving goods are suddenly made
obsolete.

Linux is even more disruptive than any of Cristensen's examples, because its
primary movement isn't from companies to customers—it's from hackers to
customers. The creators of free tools, components and applications make the
products of their labors available to anyone. In this respect, Linux resembles
such natural building materials as rocks, wood, iron and concrete. The
difference is that Linux occurs in human nature.

So companies don't “adopt” Linux so much as they mine and harvest it. Only,
because it's digital stuff, there's no scarcity. That makes it infinitely less
expensive than cheap lumber, rock, minerals and petroleum. All of which make
Linux that much easier to adopt and that much more disruptive.

The remaining challenge, then, is cultural. There the chasm remains intact. On
one side we have a bunch of techies who care deeply about the principles that
brought Linux into the world and that made it so useful to so many at so little
cost. They get worked up over ethical issues and about licenses like the GPL,
which respects the nature of Linux and its development while hardly caring at
all about its commercial potential. On the other side we have a bunch of techies
who care deeply about solving problems and making things work, who hardly

care at all about the political and moral issues that get the first side so worked
up.

In fact, the two sides aren't opposed. They're just different constituencies with
different priorities. The market logic is and, not or. We'll know we've bridged
that chasm when we stop making a big deal about it. At that point we'll all be on
Main Street.

Doc Searls is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Doing Good and Preventing Bad

Phil Hughes

Issue #109, May 2003

You can help by fighting legal FUD or by doing useful work on Linux.

Thirty years ago I was working at the Hanford Nuclear Reservation. The position
focused on systems programming, but ultimately, the environment rubbed off
on me. I learned a lot about nuclear power as well as the more antisocial
aspects of nukes. And, I recognized a problem. Any number of issues came to
mind: operational danger, waste disposal and life-cycle cost are the first three.
In any case, I knew nuclear power was not going to be, as President Eisenhower
had said 20 years before, “too cheap to meter”.

I wanted to make sure everyone learned what I had regarding the issues of
nuclear power. But, I also wanted everyone to learn all that I had learned about
alternative energy sources such as solar, biomass and wind.

I quickly found I could not deal with both issues. Understanding and teaching
about alternative energy is a huge job, as is pointing out flaws in nuclear power.
So, I chose. Because of all I had learned at Hanford, I felt I was more qualified to
talk about the problems of nuclear-power generation.

This was my choice for “preventing bad”. The more knowledge I could
disseminate, the more likely it would be that the general population would see
the issues, get involved and, in the long term, prevent the US from jumping
deeper into the nuclear well.

Unfortunately, new “bad” appeared. As photovoltaics became cheaper, utility
companies lobbied to make it harder for customers to sell power back to the
grid. Once it was proved that intertie systems to sell power back to the utilities
were safe and effective, utilities came up with rate schedules where the power
you sold back was at a lower price than the power they sold you, even though
peak output of solar systems corresponded with very high demand. They

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

wanted to use the law to escape the consequences of failure by making intertie
systems pay to decommission failed nuclear plants.

Now, back to software. When I first saw Linux (back when kernel versions
started with a dot), I merely was looking at alternatives to the “real” UNIX
systems. We had been in business publishing pocket reference cards and doing
training and consulting on UNIX systems for about ten years.

I decided Linux was a lot more than simply a hobby project. I felt it showed
great promise, so we changed direction from being a UNIX company to being a
Linux company. With over 100 issues of Linux Journal under our belt, I feel we
made the right choice.

Early on, a lot of my energy went into telling people about the virtues of Linux.
Much like telling people that nuclear power costs too much, this was a hard sell
at first. People didn't want to hear that Linux might be a better choice than
what they were working with.

Now the days of telling people that Linux is a serious contender in the OS
business are gone. Even if you still don't have it on your desktop, it is unlikely
you will sit down for a web surfing session without getting involved with some
Linux server.

The problem is that much like solar panels on your roof are a threat to the
nuclear power industry, Linux is a threat to the OS status quo. One can spend a
lot of time and energy counteracting the FUD.

As Linux is proving to be a worthy alternative, the same sort of “it works but
you can't put it here” arguments are appearing as they did with intertie
systems. They merely go by different names: DMCA and bogus software
patents are two of those names. As with nukes and solar energy, competition is
fine, but what we see is the use of the legal system to harass promising new
alternatives.

This work of “preventing bad” needs to be done. But, the alternative is simply to
keep on truckin' with Linux—continuing to identify places where Linux solves a
problem and moving ahead with the solution. So many places have either a
time-consuming manual system or a poorly implemented, non-Linux system
that people easily can make a career of problem solving with Linux.

The Linux movement needs both. Someone has to deal with FUD, and someone
needs to move Linux into new places. To go back to my nuclear power analogy,
if no one were out there developing alternative energy technology, there would

be no alternative to nukes, no matter how bad a picture the antinuke activist
painted.

As for me, I did my time dealing with the FUD. A lot of it was fun work, but I
have pretty much moved into the “just do it with Linux” camp. I would rather
show someone a solution and let them choose than spend my time
counteracting anti-Linux propaganda.

I moved to Costa Rica over a year ago. On my one-year anniversary I was
thinking about how things have been different. Aside from the more obvious—
things like I really need to be working on my Spanish—the biggest difference I
have seen is that people are more open to solutions. There is less disposable
money here than in the US and less anti-Linux FUD. Thus, it is easier here to
listen to someone's problem, propose a Linux-based solution and have them
accept it than in the US. It is easier to think Linus was right about World
Domination—except that the US might be the last country to get Linux.

By the way, besides being Linux-friendly, all electricity in Costa Rica is produced
from renewable sources including hydro, geothermal, wind and solar. Maybe
these two issues fit together more than I thought.

Phil Hughes is the publisher of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Programming Jabber

Paul Barry

Issue #109, May 2003

Adams' greatest feat is proving Jabber to be much more than an IM system by
concentrating on the infrastructure provided by the technology.

Book Review: Programming Jabber by D. J. Adams

O'Reilly & Associates, Inc., 2002

ISBN: 0-596-00202-5

$39.95 US (hardcover)

I've always been intrigued by the idea of using Jabber as a router for XML
messages, which happens to be the topic of D. J. Adam's Programming Jabber.

Things start out well enough. The first example program appears on page 7,
and even better, it's in Perl. Unfortunately, the next example program, a script
for registering new Jabber users, appears 221 pages later. In between is a
detailed description of the Jabber protocol and gobs and gobs of XML. This
material is authoritative, but I wonder whether an appendix or two wouldn't
have been a better place for much of it. This critique is especially true for the
descriptions of the Jabber.xml configuration file in Chapter 4 and Jabber

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

namespaces in Chapter 6. In addition, this material is tough going. The book is
written in the style of a reference guide, and it's pretty dry.

Thankfully, the remaining chapters (7-10) are the book's salvation. This material
describes programming Jabber and its protocol from a number of perspectives.
Not only does Adams provide explanations for writing a series of Jabber clients,
but he also shows readers how to extend Jabber with a custom component.
There's even a program that interfaces with LEGO MindStorms to determine
whether there's coffee in the pot.

The book covers three programming languages, Java, Python and Perl, with Perl
receiving the most coverage. With each of the languages, I would have
welcomed brief coverage of the libraries Adams relies on in his code. Granted,
it's a book about Jabber's protocol, but it would be more complete if it included
further information on the various Jabber libraries.

Adams' greatest feat is proving Jabber to be much more than an IM system by
concentrating on the infrastructure provided by the technology. The book
covers release 1.4.1 of Jabber. The most recent stable release is 1.4.2 (as of
December 2002), so the book is highly relevant to the current Jabber. With
release two of Jabber now in alpha, a second edition will be needed soon. For
now, Programming Jabber is a resource that Jabber programmers won't want to
be without.

—Paul Barry

email: paul.barry@itcarlow.ie

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:paul.barry@itcarlow.ie
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Free Software, Free Society: Selected Essays of Richard...

Marco Fioretti

Issue #109, May 2003

Most of this material is available on-line, but there are a couple reasons to buy
the book.

Book Review: Free Software, Free Society: Selected Essays of

Richard M. Stallman

Free Software Foundation, 2002

ISBN: 1-882-11498-1

$24.95 hardcover

This collection of 21 essays written by Richard M. Stallman between 1984 and
2002 ranges from historical milestones, including the GNU Manifesto, to
transcripts of some recent speeches. The introduction is by Lawrence Lessig,
Professor at Stanford Law School.

Most of this material is available on-line, but there are a couple of reasons to
buy the book: First, the profits go to the Free Software Foundation. Second,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

having all the essays in one place, with cross-references, updates and notes
from Stallman himself, helps readers see the big picture.

Lessig's introduction provides the right start by pointing out that if the Free
Software movement is new, radical or revolutionary, it is because it brings to
software the freedoms already present in the pre-software world. For example,
laws and legal briefs are Free as in Freedom.

The grouping of the essays shows how Stallman himself and the movement in
general have been forced to evolve over time. In the beginning it was “only”
about the freedom to program, which a minority of people needed when
computers were not widely available.

Today, almost everybody's entertainment, work, education and free speech
rights depend on computers. The essays in the second and third parts of the
book cover why the DMCA and similar efforts are harmful to citizens' rights and
a market economy.

In less than 200 pages, we go from “GNU will remove operating system
software from the realm of competition” to the problems of copy-restricted
media.

A lot of details on how this evolution happened are provided, with several
repetitions. Sometimes, these are even funny: the history of the Xerox printer,
whose proprietary driver made Stallman mad enough to start the whole thing,
is told so often that one can picture proprietary software executives cursing
Xerox for not just giving him the darn code.

Coverage of one fundamental issue, free file formats, is missing. Stallman wrote
a 2002 essay called “We Can Put an End to Word Attachments” that addresses
this need, but it's not in the book.

In general, the book is necessary reading and not only for programmers. I
personally disagree with Stallman on certain conclusions and am still trying to
decide whether I accept some others or not. But it is crucial that everyone
thinks about these problems today, builds his or her own conclusions and
follows them. Even if you reject all Stallman's ideas, you must know why, and
this book will help.

—Marco Fioretti

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Letters

Various

Issue #109, May 2003

Readers byte back.

Replacing Microsoft Exchange

First off, I really did enjoy reading the article on replacing Microsoft Exchange
with Linux [“Understanding and Replacing Microsoft Exchange” by Tom
Adelstein, LJ, February 2003]. The article didn't explicitly state you were trying to
replace Microsoft Exchange 5.5, but it was obvious to me that was the version
you were working with. Microsoft's Exchange 5.5 was limited in the total size of
the database, but that has changed in Exchange 2000 and Titanium. Exchange
2000's Exchange Storage Engine has been rewritten to allow much larger
database sizes, which would be limited only to the total capacity of the
hardware on which the database would reside. Also, I fail to understand the
reasoning of why IMAP was provided as a connection mechanism. IMAP will
provide you with a way to preview the e-mail message. Does your DLL plugin to
Outlook provide a way for the message to remain on the e-mail server?

—Chris Lynch, Network Engineer

Tom Adelstein's reply: Thanks for your thoughtful letter. I appreciate your
detailed understanding of Exchange. It is quite impressive. Our goal at Bynari
was to create an RFC-compliant platform that allowed Microsoft Outlook to run
in corporate workgroup mode. In the case of Outlook 2002, we wanted to
provide calendar sharing and delegation.

A Bas le Franglais!

I have been a happy LJ subscriber for many years now. I am usually not one to
complain about things but the articles written by Marcel Gagné are getting
irritating. His French Chef schtick is getting VERY old and detracts from his
articles. Please consider having him stop that and simply write informative
articles.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

—David Vohwinkel

Can I Cluster This App?

It is with much interest that I have read your editorial on clustering the
previously unclustered [From the Editor by Don Marti, LJ, February 2003]. I
seem to be unable to convince the powers that be at some CAD and CAD/CAM
firms that this is an option. Therefore, I would very much like to get information
on how to make programs that are not enabled for cluster technologies to work
with cluster hardware configurations.

—Darald

If you have one huge, slow process, you'll probably need to rewrite the
software using a clustering library. However, if you need to make many
processes cooperate, OpenMosix automatically will migrate some of them to
idle nodes in the cluster. See openmosix.sf.net.

—Editor

More on Screen, Please

Thank you for excellent article on screen(1) [“Power Sessions with Screen” by
Adam Lazur, LJ, January 2003]. Please persuade Adam Lazur to write a couple
follow-up articles to this introductory one. I'm already starving for more.

—Jari

Geeklog Isn't a PHP-Nuke Fork

In the March 2003 issue, there was an article on weblogs that led readers to
believe that Geeklog is a fork of PHP-Nuke [“Building with Blogs” by Doc Searls
and Dave Sifry]. Much respect needs to be given to PHP-Nuke for helping to
spur the weblog phenomenon, and I think the article presented that respect.
However, Geeklog is not a fork of PHP-Nuke. Also, the article should have
mentioned www.opensourcecms.com. It has the most popular packages in a
demo-able state for users to test them without having to download, install and
configure.

—Tony Bibbs

MPAA vs. Free Speech

Seth Schoen's column “Broadcast Flag: MPAA's Latest Attack on Linux” (LJ,
March 2003) appears to be mistitled. Mr. Schoen did not provide evidence on

http://openmosix.sf.net
http://www.opensourcecms.com

the MPAA making any form of attack on Linux or on any free operating system
in the article. On a side note, he wrote, “Reporters were barred from meetings,
which had a $100-per-meeting admission fee.” Were reporters specifically
barred or was it just that reporters would have to pay $100 per meeting?

—Jason

Seth Schoen replies: Magazine editors have little space available for titles, so I
could see where they would feel the need to condense “Broadcast Flag: MPAA's
Latest Attack on the Right to Use Free Software to Lawfully Make and
Interoperate with Recordings of Copyrighted Audiovisual Works” (which is what
I would have called it) to “Broadcast Flag: MPAA's Latest Attack on Linux”.
Reporters were specifically barred from meetings; they tried to participate, and
they were kicked out.

Show Us Your Linux License Plate

I was pleased to see the LINUX license plate in your February 2003 issue
[Letters], particularly as I have the same five letters on my car! I too was
surprised to find that LINUX had not been chosen in my home state (Northern
Territory, Australia). Having a LINUX license plate is certainly a talking point
around town. I'd like all the owners of LINUX license plates from around the
world to send a picture to LJ, along with a few words about their particular part
of the world.

—Adrian Casey

Linux Journal Named Our Son

A few years ago, when I first subscribed to LJ, someone made a mistake and
sent two copies of each issue. One was sent to me, and the other was
addressed to Eric W. Sattler, which was strange because there was nobody by
that name that I'd ever heard of. I laughed at it, and that was that. In 2001,
when our son was born, my wife and I were having trouble coming up with a

name, and we remembered Eric from Linux Journal. It sounded better than
anything we had thought of on our own, so Eric it was. He'll be two years old
this June, and I wanted to send this mail to thank you for helping us name our
son.

—Tom Sattler

BBS Renaissance

In the March 2003 issue, the From the Editor column talks about community
and the fear of spam people have when posting on Usenet or web forums. But
there is something old that has become new. Cheap hardware and cable
modems have caused a renaissance in the BBS scene, and one of the major
factors in this is a GNU operating system named Linux. Why choose to eat
spam when you can telnet into a friendly BBS?

—Anonymous

Linux at 14,000 Feet

Although Bolivian users held an installfest at 11,000 feet, astronomers at
Mauna Kea regularly install Linux at 14,000 feet. At that height we need extra
cooling, usually by placing big fans (ten inches at least) near the monitor, which
seems to produce the most heat. The lower efficiency of cooling is a big
problem at these altitudes; yet, Linux runs well up there too.

—Peter Teuben

John 14:6

I find a T-shirt on the Linux Journal web site to be very offensive. The shirt has a
typical Christian fish with the words “Linux Saves” inside. I'm surprised the

https://secure2.linuxjournal.com/ljarchive/LJ/109/6591f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6591f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6591f3.large.jpg

person(s) involved with designing this T-shirt, its advertising and sale aren't
offended.

—Norman Clerc

Tech Tips Please

I remember you used to sprinkle little tech tips, command one-liners and other
useful everyday kinds of knowledge throughout your magazine. What
happened to those? I found them very helpful. I wrote a script called rpmff
(RPM File Finder) to search RPMs looking for a specific file and find it useful.

—Doug Wright

Look for rpmff elsewhere in this issue.

—Editor

LJ Web Site Helps You Shop

I bought two products that recently have been featured on the Linux Journal
web site: a Hawking PN7127P print server [www.linuxjournal.com/article/6509]
and a copy of Eric Meyer on CSS: Mastering the Language of Web Design
[www.linuxjournal.com/article/6618]. Both are great. I appreciate having the
articles, the reviews and even the ads. You folks have found the right balance.

—Mike Tarrant

New Blog Software

I just read the article on weblogging by Doc Searls and Dave Sifry [LJ, March
2003]. Nice work. And, just to add another option for Linux, there is the Python
Desktop Server (pyds.muensterland.org). It is similar in spirit to Radio Userland
but runs on systems where Radio isn't available. In combination with the
Python Community Server Software (pycs.net), you can get your own
community server up with people participating quite fast.

—Georg

Set and Forget Linux App

I recently built a little web application that quickly became production. So
quickly in fact, it was only running on the PC running Linux that I used in
development. It became the only Linux server in our otherwise all-Windows
data center. That was last October. I never did see a new server, but the

https://secure2.linuxjournal.com/ljarchive/LJ/000/6509.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6618.html
http://pyds.muensterland.org
http://pycs.net

application just stayed up and worked. Then last Friday, it suddenly went dark.
After being yelled at for how unreliable my “toy” was, I finally got one of our
Windows Network “Engineers” to admit, “Well, we saw that box running in the
data center, but because no one had touched it in months, we figured no one
was using it.” I guess I'll call them to reboot it for me every now and then just so
they know it's still in use.

—Michael K. Martin, DVM, MPH

Father and Son Linux

I just want to let you know that I have been getting LJ for the past few years. It is
a wonderful magazine, and I enjoy reading it every month. My son, who is ten
years old, has started to read LJ, and he finds it enjoyable to read as well.

—Jim Wininger

Missing #include

I enjoyed the article about signals [“Linux Signals for the Application
Programmer” by Dr B. Thangaraju, LJ, March 2003], but let me point a small
omission. Listing 4 (page 48) needs to #include <errno.h> in order to compile.

—Paul

maddog's Travels

Here's a picture of me and Jon “maddog” Hall at the October 2002 Association
of Computing Machinery (ACM) chapter meeting at Northeastern University in
Boston. We especially appreciate his regular appearances at our meetings and
his colorful and insightful commentary on the future of Linux worldwide. It's

through our exposure to people like him that we can form open minds and
think for ourselves instead of being led by one company's vision.

—Cathy Swenton, College of Computer Science, Northeastern University,
Boston, Massachusetts

Linux Routers Save Hospital Net

I work at a US Navy hospital in Naples, Italy. Recently, my Cisco 7507 inner
security screening router died. Then the next week, my core switch. I had to
piece together three Linux boxes quickly to use as routers to get through this
problem. We are still running on two Linux routers, because my core switch
hasn't recovered yet.

—Lee Randolph, CCNP

Sync Files with Unison

rsync [“rsync, Part I” by Mick Bauer, LJ, March 2003] is a wonderful tool, but if
you want file synchronization, you may not even need to invoke it explicitly. The
excellent file synchronization program Unison (www.cis.upenn.edu/~bcpierce/
unison) also uses the rsync algorithm.

—Ben Crowell

Freeze, Spammer, You're under Arrest

After reading your comments about spam in the March 2003 issue [From the
Editor], I wanted to make a comment of my own. We already have laws that
would deal with the jerks who spam. The theft of bandwidth and nuisance
could be dealt with through criminal charges, if the government would get off
their backsides and enforce the laws we already have.

—Craig Sparks

Give David Bandel More Space

I do not know the details behind the decision to downgrade David A. Bandel's
Focus on Software column to the Upfront section of LJ, but I see it as a definite
loss. Reading Mr. Bandel's column every month was one of the highlights of my
subscription.

—Raymond Moczynski

http://www.cis.upenn.edu/~bcpierce/unison
http://www.cis.upenn.edu/~bcpierce/unison

Blog from Emacs

BlogMax is a blog package that's based entirely upon Emacs. It works with both
Emacs and XEmacs, is easily extensible and runs on several platforms
(billstclair.com/blogmax/index.html). All that is required is a working install of
Emacs or XEmacs and access to your web site files via FTP.

—Shane Simmons

Cover Slackware, Please

I'd really like to suggest that LJ look into printing information on the Slackware
distribution. I've been a Linux user and flag bearer since 1994 when I first
installed Slackware; since then I've installed many different distributions of
Linux and versions of UNIX. I always come back to Slackware due to its
consistency, stability and well-thought-out development. I feel that Slackware
has earned a bad reputation as being either dead or underdeveloped, neither
of which could be further from the truth! I urge you to please consider an in-
depth article on the status and beauty of Slackware.

—David Fleason

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://billstclair.com/blogmax/index.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Upfront

Various

Issue #109, May 2003

diff -u, LJ Index, and more.

diff -u: What's New in Kernel Development

The devfs filesystem work by Richard Gooch may be coming out of the kernel.
At the end of December 2002, Adam J. Richter announced a patch to replace
devfs with a new mechanism based on RamFS. The new system attempted to
mimic devfs' behavior in many ways, though Adam did not intend to include all
of the devfs functionality in the RamFS system. He wanted his implementation
to be, in part, a cleanup of the devfs interface, so that features used only by few
systems might be replaced with other methods. As a result of this restructuring,
he managed to reduce the size of the code to one-fourth of what it had been.
The devfs system always has been controversial, and Linus Torvalds' decision to
include it in the official tree was even more so. Folks like Alexander Viro and
others have firmly refused to use it on grounds that it simply wasn't coded well
enough. Shortly before Adam announced his own work, Alexander had begun
an invasive cleanup and restructuring of the devfs code. Richard, having
struggled for years to produce devfs and make it available in timely patches,
seems to have vanished entirely from the kernel mailing list.

The sysfs filesystem is intended to be a replacement for /proc and other
methods of exposing kernel data to user space. It began as a tool for driver
writers, but its use was broadened in 2002 to all parts of the kernel. Since then,
there has been an ongoing effort to migrate a variety of other interfaces to
sysfs. In January 2003, /proc/cpufreq came under the knife when Dominik

Brodowski marked that interface deprecated in favor of a new sysfs interface in
the cpufreq core code. Patrick Mochel also had a hand in this, making sure
Dominik's work matched up with all the latest sysfs features. Later that month,
Stanley Wang sent some code to Greg Kroah-Hartman to replace pcihpfs with a
sysfs interface. In this case, however, sysfs was not up to the task as the needed

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

hot-plugging code was not yet fully in place. No problem. Greg coded up the
needed sysfs feature and sent it to Patrick.

One day in January 2003, Alan Cox happened to mention that the tty code in
the 2.5 tree was badly broken and had been for a while, primarily as a result of
locking changes in the kernel preemption code. This came as a surprise to
many people, and some wondered why this was the first they'd heard of it,
especially because the 2.5 tree was already in feature-freeze, headed for 2.6 or
3.0. Greg Kroah-Hartman looked at the problem and was horrified. He said it
was not going to be easy to fix and was most likely something for the next
development tree. But Alan said this wasn't an option, because the tty code was
broken already and had to be fixed before the next stable series.

Traditionally, the Linux kernel has been compilable only with the GNU C
compiler, and even then it often has been necessary to use a particular version
of the compiler to compile particular versions of the kernel. The kernel always
has depended on GCC extensions, and the relationship between kernel and
compiler has been intertwined for years, like an old married couple. Therefore,
various people were shocked to learn that the kernel also could be compiled
with Intel's C++ compiler, icc. Apparently, Intel has had this as a goal for quite
some time, and they've even submitted patches to Linus with the sole purpose
of enabling their compiler to handle the kernel source tree.

It's always nice to learn that the feature you desire already has been
implemented. According to the documentation (at least as of late January 2003),
the only filesystem with quota support was ext2. However, apparently work has
been going on behind the scenes, because ReiserFS, ext3, UFS and UDF now
support quotas.

—Zack Brown

https://secure2.linuxjournal.com/ljarchive/LJ/109/6620f1.large.jpg

File access statistics:

www.hszk.bme.hu/~nm127/file_statistics

This utility scans any portion (or all) of the filesystem tree and provides fairly
detailed statistics regarding the files on that system. If you happen to be
running Debian or a Debian-based system, such as Knoppix, you can receive
even more information on the associated dpkg files. This program uses the
access times rather than creation or modification times to tell you how “old” or
stale a file is. Chances are, files not accessed during the past five years are
either historical archives or cruft. Requires: Perl.

—David A. Bandel

Football Manager: www.autismuk.freeserve.co.uk

Football Manager is a game where you are the manager of a soccer team.
Graphics are crude, but the game is a lot of fun. It's a game of strategy where
you buy and sell players and choose who will play the game this week. Once
you've done your job, sit back for 30 seconds to watch a few shots at the goal
and see who won. Then, see your team's rating rise or fall compared with other
teams in the league. If I don't remove this game I'll never get any work done—

https://secure2.linuxjournal.com/ljarchive/LJ/109/6620f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6620f1.large.jpg
http://www.hszk.bme.hu/~nm127/file_statistics
http://www.autismuk.freeserve.co.uk

it's more addictive than Adventure. Requires: libSDL, libm, libX11, libXext, libdl,
libpthread, glibc.

—David A. Bandel

GNU Pilot Logbook Pro:

ftp.stampede.org/skibum/gplbp/gplbp.tar.gz

If you're a pilot, you know maintaining a logbook is not a big chore. But, when
someone wants to know how many hours of which type you have, it becomes a
little more difficult. This logbook is like the professional logbook for pilots with
all the entries you'll need, plus two user-definable fields. With one click you can
see all totals to date. And, by running a small script on the data file (you'll have
to create that yourself), you can create a data file for 60 or 90 days back to see
how your totals are for currency. Requires: libgtk, libgdk, libgmodule, libglib,
libdl, libXi, libXext, libX11, libm, glibc, pilot's license and airplane (last two
optional).

—David A. Bandel

https://secure2.linuxjournal.com/ljarchive/LJ/109/6620f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6620f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6620f3.large.jpg
ftp://ftp.stampede.org/skibum/gplbp/gplbp.tar.gz
https://secure2.linuxjournal.com/ljarchive/LJ/109/6620f4.large.jpg

Hardware Lister:

ezix.sourceforge.net/software/lshw.html

https://secure2.linuxjournal.com/ljarchive/LJ/109/6620f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/109/6620f4.large.jpg
http://ezix.sourceforge.net/software/lshw.html

This hardware lister shows quite a bit of detail, including IRQ, module used and
more for cards and other hardware. If you need a great quantity of detail on a
system for an inventory, you might want to look at this program. About the only
thing missing is the MAC address on the network cards, but that's easy enough
to get. Requires: libstdc++, libm, libgcc_s, glibc.

save space.

—David A. Bandel

LJ Index—May 2003

1. Bottom price in thousands of dollars of the new SGI Altix 3000 high-end
Linux servers: 30

2. Top price in millions of dollars of the new SGI Altix 3000 high-end Linux
servers: 1

3. Number of old SGI machines replaced by Dells running Linux at Sony
Pictures Imageworks: 600

4. Number of desktop Linux systems now selling at Sams Club's on-line
store: 1

5. Price of the desktop Linux systems now selling at Sams Club's on-line
store: $297.95

6. Number of different Linux systems (all Microtel) now selling at Wal-Mart's
on-line store: 33

7. Number of different Lindows-based systems: 15
8. Number of different Mandrake-based systems: 9
9. Number of different Lycoris-based systems: 9

10. Bottom price for a Linux (Lindows) system at Wal-Mart's on-line store:
$199.98

11. Top price for a Linux (Mandrake) system at Wal-Mart's on-line store:
$648.00

12. Millions of dollars the Japanese government plans to spend on open-
source Linux development for consumer electronics goods in the next
fiscal year (starting April 1, 2003): 8.3

13. Thousands of dollars the Japanese government plans to spend in the next
fiscal year to study switching its own computers to Linux: 416

14. Position of Running Linux among O'Reilly and Associates best-sellers: 1

15. Number of Running Linux copies sold: 200,000

16. Current minimum percentage of Linux server shipments, according to
Meta Group: 15

17. Current maximum percentage of Linux server shipments, according to
Meta Group: 20

18. Linux share of server shipments by 2006 or 2007, according to Meta
Group: 45

19. Multiple of performance improvement Reuters Market Data Service gets
out of its new Red Hat Linux/HP/Intel systems over earlier proprietary
platforms: 2-5

Sources

1-3: Los Angeles Times4-5: samsclub.com6-11: walmart.com12-13: Associated
Press14-15: “Running Linux in a New World” by Russel J. T. Dyer
(www.linuxjournal.com/article/6617)16-18: Meta Group, Inc.19: Wall Street &
Technology

Magic Notebook:

www.jonathanscorner.com/etc/magic_notebook

Using Magic Notebook is like keeping notes in a notebook, except you use a
web interface rather than a pen or pencil. This program can be accessed from
anywhere you can reach your web server and can be run normally or
encrypted. The notes are stored on your filesystem as HTML files, so if you
don't want to use the web interface, the notes are still there. Requires: web
server that can serve up CGI scripts, web browser.

—David A. Bandel

http://www.samsclub.com
http://walmart.com
https://secure2.linuxjournal.com/ljarchive/LJ/000/6617.html
http://www.jonathanscorner.com/etc/magic_notebook

Pebrot: pebrot.sourceforge.net

I work on a number of servers and don't install X on most of them, so I'm
always looking for command-line programs that can replace X programs.
Pebrot is a Python version of MSN Messenger that runs without X, like the UNIX
talk program. This makes things easier if you find it necessary to run the
program remotely or don't have X installed. Requires: Python.

—David A. Bandel

Server Status: www.the-den.org/status

This is yet another program that allows you to keep an eye on servers and their
status. Although it does require X, it's clean, fast and simple. A number of such
programs require SNMP; however, this requires only basic network services.
You can leave it running on any system with Perl and Tk and see instantly if you
have a problem with a critical service. It won't send you e-mail, but it
automatically updates every 60 seconds (configurable) and is easy to read.

http://pebrot.sourceforge.net
http://www.the-den.org/status

Requires: Perl, Perl modules IO::Socket, Tk, Tk::Checkbutton, Tk::Menubutton,
Tk::Optionmenu.

—David A. Bandel

They Said It

The problem with intellectual property law is that it tries to take something that
is extremely difficult to define and put hard definitions around it. It's not a
system that we want to try to embed in cyberspace in the early days of this
development....We're creating the architecture, the foundation for the social
space where everybody in humanity is going to gather. And if we jigger the
foundation design to suit the purposes of organizations that will likely be dead
in 15 years, how shortsighted is that?

—John Perry Barlow

It's hard to find successful adults now who don't claim to have been nerds in
high school.

—Paul Graham

Linux servers are taking on new roles in enterprise computing, moving from the
web-centric workloads, where they are already well established, and moving
into application-serving and database-serving workloads. This move is being
made possible as ISVs (independent software vendors) port more applications
that formerly had been running only on UNIX servers and Windows servers to
Linux servers. IDC expects that Linux servers will continue to evolve, both in
“scale out” clustered configurations for technical and commercial computing
and in “scale up” configurations for larger databases with a single-system
image.

—Jean S. Bozman, research vice president of IDC's Global Enterprise Server
Solutions Group

Ericsson Releasing TIPC to Open Source under GPL: One Step Ahead toward Building Carrier-

Grade Linux Clusters

Ericsson released the source code for TIPC (Telecom Inter-Process
Communication) to the Open Source community on February 3, 2003 under the
GNU General Public License (GPL). TIPC is a specially designed protocol for
intracluster communication and has been used as a part of Ericsson products
for years, deployed at hundreds of sites around the globe. It is now ported to
Linux and is implemented as a loadable kernel module.

TIPC is a useful toolbox for anyone wanting to develop or use carrier-grade
Linux clusters. It provides the necessary infrastructure for cluster, network and
software management functionality.

The functional addressing scheme seems to be unique, as is the subscription
services and agile connection concept. The signaling link implementation,
providing full load sharing and safe failover over any type of bearer is also an
asset.

TIPC features include:

• Full location transparency: TIPC provides a functional addressing scheme,
hiding all aspects of the cluster's physical topology for the application
programs. Mapping between functional and physical addresses is
performed transparently and on the fly using a distributed, internal
translation table.

• Lightweight, “agile” connections: by avoiding any hidden protocol
messages, the message exchange within a transaction, including
connection setup, short data transfer and shutdown, can be tailor-made
by the user and, hence, be made more efficient. An established
connection will react to and report a problem to the application upon any
kind of service failure.

• Generic, adaptive, signaling link protocol: tasks that typically are
implemented in the transport layer, such as retransmission,
segmentation, bundling and continuity check, are pushed down to the
signaling link layer. This makes the link layer more complex but provides
better resource utilization and results in a more efficient stack. Signaling
links are tightly supervised by a continuity check of configurable
frequency and are able to detect and report link failures within a fraction
of a second. Failover to redundant links in such cases is handled
transparently and is disturbance-free. Signaling links are self-configuring,
using a broadcast/multicast neighbour-detection protocol when possible.

• Performance: TIPC transfers short (< 1KB) single messages between
processors, 25-35% faster than TCP/IP and with comparable speed for
larger messages. For intraprocessor messages, delivery speed is 75%
better. Furthermore, by using the lightweight connection mechanism, a
transaction can be performed by exchanging as few as two messages, to
be compared with a minimum of nine in TCP/IP. Hence, short
transactions, typical in telecom applications, can be performed in a
fraction of the time of corresponding TCP transactions.

• Quality of service: in-sequence, loss-free message delivery can be
guaranteed in both connection-oriented and connectionless mode. In
case of destination unavailability, nondelivered messages are returned to
the sender along with an error code indicating the cause of the problem.

• Subscription services: it is possible for application programs to subscribe
for the availability/non-availability of functional and physical addresses.
This means it is easy to keep track of both functional and topological
changes in the cluster, as well as to synchronize the startup of distributed
applications.

We are planning to write a full technical article on TIPC for LJ in the upcoming
months; meanwhile, feel free to contact Jon Maloy (Jon.Maloy@Ericsson.com) to
discuss any aspect of TIPC.

Resources

• Carrier Grade Working Group: www.osdl.org/projects/cgl
• Open Source Development Lab: www.osdl.org
• TIPC Web Site at SourceForge: tipc.sourceforge.net

—Jon Maloy and Ibrahim Haddad

email: david@pananix.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:Jon.Maloy@Ericsson.com
http://www.osdl.org/projects/cgl
http://www.osdl.org
http://tipc.sourceforge.net
mailto:david@pananix.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux 2.6: Can You Break It?

Don Marti

Issue #109, May 2003

A preview of the 2.6 kernel and the audio excellence of Linux.

As this issue goes to the printer, kernel development is in feature-freeze. Pretty
soon comes the fun part—testing. Almost as important as the work the kernel
developers do is the work the kernel testers do. And you don't have to be a
kernel expert to test the pre-2.6 kernels on your hardware or your application.
By the time you read this, your favorite Linux news sites and mailing lists
already might be getting “Please test” messages. Watch your favorite Linux
sites, including www.linuxjournal.com, for news about the kernel testing
process and how you can help.

Can Linux do for music what it did for server applications? Ask Dave Phillips. His
linux-sound.org web site is a resource for everything from hard-disk recorders
to music notation editors. This month, he's written a massive roundup of
softsynths, software that uses a bewildering array of techniques to turn your
Linux box into a synthesizer studio. Plug in a MIDI keyboard or run a sequencer,
and follow along on page 80.

If you practice, soon you'll be listening to music you made, and it will sound
better than CDs you buy from the major labels. Why? Rip Rowan explained it
best on prorec.com:

Record labels have never really understood what
makes a record sound good and frankly, few even
care....For some reason, record labels have it in their
heads that LOUD equals good, and therefore, LOUDER
equals better. Not caring to understand even the
basics of audio, these morons simply demand more
volume (typically from the mastering engineer) and
really don't understand or care about the
consequences of their demands.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/
http://linux-sound.org
http://prorec.com

So using the audio excellence of Linux to rip major-label CDs is as pointless as
burning copies of Xenix or SCO OpenServer. Record your own stuff. Freedom-
loving hackers have reinvented the way we get operating systems and made
them better. Now you can be the one to reinvent the way people get music, and
make music better.

Two of the biggest advantages of 2.6 are going to be the included ALSA sound
drivers and some dramatic improvements in latency that will make out-of-the-
box distributions suitable for studio-quality audio. Preemptible kernel hacker
Robert Love covers these and more on page 52.

If your need for raw software speed is greater than your attachment to little
features like hardware memory protection, or if your embedded application is
so important that if it goes down the machine might as well have crashed,
you're the kind of person who might want to try Kernel Mode Linux. Toshiyuki
Maeda explains how to make any application into a part of the kernel on page
62.

Hans Reiser follows up with more on the Reiser4 filesystem, one of several that
are new for 2.6, on page 68. And, you might notice a few changes when you
configure and build the new kernel. Greg Kroah-Hartman fills us in on what to
expect on page 62.

Free software will always be an excellent choice for security and network
applications, and a good example is the beginning of Mick Bauer's tutorial on
Firewall Builder on page 30. The kernel is only a beginning. Freedom works. Use
it.

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Adaptability and Ingenuity

Heather Mead

Issue #109, May 2003

Sometimes being the can-do person is a good thing, and sometimes it's not—
advice for when the project rests on your shoulders.

Currently, my web article inbox is full of articles that reflect one of the tenets of
the open-source philosophy—doing it yourself. Sometimes, however, we aren't
doing things ourselves because we want to, but because it's our job and
someone else waited too long to do his or hers. Other times, we are forced to
find some way to pull it all together or watch as the whole process grinds to a
halt. Out of necessity comes ingenuity, and that's most likely to be true if you're
adaptable, which is one of the reasons why knowledge of Linux can be such a
handy tool in your arsenal. From the articles I've seen lately, it seems that if you
know Linux and open source, people are coming to you for help whether you
want them to or not.

In “Installing Slash for a Private Project” (www.linuxjournal.com/article/6674),
Paul Barry shares his tale of finding a way for an academic department to
schedule meetings, decide on topics and record opinions and responses. To
meet the department's asynchronous needs, Paul chose to use the Slashdot
framework, Slash, installed locally. His article walks readers through the setup
process, including installing the database back end, Apache with mod_perl
support and all their dependencies. As always, Paul is humble enough to share
his mistakes so you can avoid making the same ones.

If you're a system administrator, one of the most frustrating parts of your job
may be dealing with people who expect you to reinvent the wheel on a day's
notice. In “Configuring a Virtual Server Instance for Quick Recovery”
(www.linuxjournal.com/article/6531), Jeffrey McDonald explains how he took
advantage of VMware's disk modes, in both the server and workstations, to
provide a new development/test environment in a day and a half. As he says,
“It's cool to be able to run multiple instances of virtual servers on a single Linux

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/000/6674.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6531.html

host server, but easily being able to manage or back out changes to the OS and
applications within the virtual server instances is even cooler.”

On the other end of the do-it-yourself spectrum, in a place we might call fun, is
music—specifically, the theremin. Almost everyone wants to play some sort of
instrument well. I'm still mad at my five-year-old self for refusing piano lessons.
But the theremin offers us all a chance to make music in one of the most
unique ways imaginable. To make it even easier, Seth David Schoen offers the
“Poor Man's Theremin” (www.linuxjournal.com/article/6597), which “turns a
laptop computer with an 802.11b card into a theremin-like instrument, using
the signal strength reported by the card to control the pitch of a note”. Your
coworkers and friends may complain, but at least they'll leave you alone for a
while.

The weather is starting to break here in Seattle; we've already had a couple of
those clear sunny days that exist to let you know there is more than work in
life. So while we encourage everyone to take a break from the screen and
keyboard—get crazy and go outside—we thank you for sharing all your stories
and wait to see what you are up to next. Keep us posted at
info@linuxjournal.com.

Heather Mead is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/000/6597.html
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #109, May 2003

Our experts answer your technical questions.

More Help for SSH Question

The first Best of Tech question in the March 2003 issue is a question that is
becoming more and more common, because people and distributions are
choosing higher security as a default or as an option. A possible reason that the
user can't connect by SSH is the /etc/hosts.allow and /etc/hosts.deny files. Set
sshd: ALL in hosts.allow, or preferably, if you know where you will SSH from, list
only those hosts.

—Benjamin Judson

Partition Table Changes Don't Take

I am using a Seagate ST32550 SCSI hard drive with an AHA1720 interface card,
but I am unable to partition it with fdisk. When I run fdisk on the drive, the
changes do not become permanent, even after a reboot. The SCSI interface can
detect it and can do low-level formats and verifications without a problem.
When I enter fdisk, though, it creates the partition, but it does not stay put.

—Eskinder Mesfin, mesfin@attbi.com

It sounds like you are not writing the changes to the partition table; fdisk
doesn't write until you tell it to write. Before you q to quit, do a w to write the
changes.

—Christopher Wingert, cwingert@qualcomm.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:mesfin@attbi.com
mailto:cwingert@qualcomm.com

Connecting with MSN

My modem is configured to work with the KInternet program that is activated
through the KDE desktop on SuSE 8.0. The modem initializes fine, calls the
server of my ISP (MSN) and then it dies. I look at the activity log and see these
error messages:

Failed Authentication with peer
Possible Bad Account or Bad Password

Does MSN require a different login process than what is accommodated under
KInternet?

—Chris, cgsnip@msn.com

You might want to try a different authentication scheme, such as PAP or CHAP.

—Christopher Wingert, cwingert@qualcomm.com

Some users on mailing lists report success by prepending MSN/ to the user
name. So if your user name were joe, you would set the user name in KInternet
to MSN/joe.

—Don Marti, info@linuxjournal.com

Five Years without a Problem, Now This?

My SuSE 6.0 system has worked like a charm for almost five years nonstop—
except for power failures—holding my DNS and Sendmail. Suddenly, the user
account I always use is no longer allowed to log in. The only users that can log
in are root and a second user account, but I can't figure why that user account
is special. Although there's no login, I can su to any account by giving the
correct password. The accounts are not locked; the passwords have not
expired, the passwords are correct; the users have permissions on their home
directories, and the permissions on passwd and shadow are correct. I've tried
creating an account in the same group ID (admin) and groups as where the
special account is listed—the one that can log in—but it didn't work. The
messages in syslog are incorrect password.

—Juan Alvarez, juan.alvarez@thales-is.com

Without a closer look at your system, the gut reaction to this type of situation is
to investigate the possibility of a system intrusion. Telnet sends your password
in the clear over the network, and other dæmons installed on any five-year-old
distribution have had vulnerability reports over the past few years. Your
problem report does have that fishy smell. Barring any problems on that end,

mailto:cgsnip@msn.com
mailto:cwingert@qualcomm.com
mailto:info@linuxjournal.com
mailto:juan.alvarez@thales-is.com

you can investigate some configuration facilities that control user logins. For
example, is there an /etc/nologin file? This prevents any non-root user from
logging in, and your extra user account may be given special treatment here if it
is a member of the root group in /etc/group. Also, examine /etc/passwd and
verify that the other users all have valid shells and home directories.

—Chad Robinson, crobinson@rfgonline.com

Given the age of the installation, you may want to upgrade to a newer and
more secure distribution. A second guess would be the amount of available
disk space.

—Christopher Wingert, cwingert@qualcomm.com

The two measures that prevent most security problems are 1) remove or
disable unused software, which should include telnet—use OpenSSH and 2)
subscribe to your distribution's security mailing list to get news of updates,
then install the updates when they're available.

—Don Marti, info@linuxjournal.com

New Dell Server Locks Up

At work we are about to deploy our first web site that will run under Linux,
which I'm quite happy about. However, I'm having a problem with the servers
and hope you can help. Our development servers are Dell 2550 machines, and
our production servers are Dell 2650s. We are running Red Hat 8.0 on the
equipment, which runs fine for the most part. We have had unexplained
lockups, however, on all the servers, in which the console becomes locked and
the machine has to be hard reset. No indication of what caused the lockup is
reported in any of the log files. After searching the Dell and Red Hat forums I've
found some help. Essentially, this help is to put the option noapic on the kernel
command line in the grub.conf file. After doing this, the machines seem to run
well. What does the noapic command option do on an SMP system? And has
anyone else experienced this problem on Dell 2550/2650 machines?

—Doug Farrell, dfarrell@grolier.com

The advanced programmable interrupt controller (APIC) replaces the standard,
external interrupt controller with functionality inside the CPU itself. It supports
some neat tricks such as performance counters and watchdog facilities.
Normally, this support is not supposed to interfere with systems that do not
have an APIC. However, in some instances this creates system lockups such as
the ones you've experienced. The major implication of running in noapic mode
is a performance hit, as interrupts are not handled as efficiently. For systems

mailto:crobinson@rfgonline.com
mailto:cwingert@qualcomm.com
mailto:info@linuxjournal.com
mailto:dfarrell@grolier.com

that are heavily interrupt-driven (this unfortunately includes those that do a lot
of networking work, such as web servers) this might be measurable.
Nonetheless, the benefits of SMP almost always outweigh this impact. Some
load testing on your end should help you identify the maximum user loads that
you can expect from your systems.

—Chad Robinson, crobinson@rfgonline.com

Belkin Wireless Card: Supported?

I am trying to get the Belkin wireless PCMCIA card to connect to a wireless
access point from my laptop. I am wondering what module I should use for the
PCMCIA card.

—Charles R. Fuller, charlesrfuller@netscape.net

Another Linux user was kind enough to post the details of his own experience
with Belkin's wireless components on his web site. This site may be helpful to
you: www.jacked-in.org/linux/belkin_wireless.php.

—Chad Robinson, crobinson@rfgonline.com

The Belkin card uses the same chipset as the Orinoco card. A simple solution is
to alias the wireless device's Ethernet interface to orinoco_cs in /etc/
modules.conf. If this does not work, you can find out more about the chipset
with cardctl ident.

—Christopher Wingert, cwingert@qualcomm.com

Can't Boot New Install

When I attempt to boot Red Hat 7.3, I receive a message stating there is an
invalid system disk. It also indicates I should replace the disk and press any key.
What can I do to eliminate this problem short of reinstalling Linux?

—Logan, crossl@lakecitycc.edu

This message typically indicates that your BIOS was unable to find a boot loader
on your drive. If you installed LILO or another boot manager when you installed
Linux, chances are it was not properly done, and you should double-check the
parameters you used. If you didn't install a boot manager, your problem is a bit
easier to identify. Either way, you should be able to use an emergency recovery
disk or the original installation disk to boot your system. Then you can install
the boot loader again.

mailto:crobinson@rfgonline.com
mailto:charlesrfuller@netscape.net
http://www.jacked-in.org/linux/belkin_wireless.php
mailto:crobinson@rfgonline.com
mailto:cwingert@qualcomm.com
mailto:crossl@lakecitycc.edu

—Chad Robinson, crobinson@rfgonline.com

If there is a floppy in the disk drive, remove it.

—Christopher Wingert, cwingert@qualcomm.com

How to Make XDM Come Up at Boot?

I cannot get Linux (Red Hat 7.2) to boot into the X GUI. Instead, I get a login
prompt. Is there a way to edit the default init level? It also fails WINE on boot
up.

—Keith Raposo, keith.raposo@sms.siemens.com

To make sure X is correctly installed, type startx. If this works, you then can
change the first non-comment line of /etc/inittab to

id:5:initdefault:

—Usman S. Ansari, uansari@yahoo.com

In your /etc/inittab there is a line that reads id:NUM:initdefault:. Change the
number to your desired init level, which is 5 for an XDM login screen.

—Christopher Wingert, cwingert@qualcomm.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:crobinson@rfgonline.com
mailto:cwingert@qualcomm.com
mailto:keith.raposo@sms.siemens.com
mailto:uansari@yahoo.com
mailto:cwingert@qualcomm.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Heather Mead

Issue #109, May 2003

Mobile DiskOnChip G3, Quicknet VoIP for Linux, SNAP Ultimate I/O Learning
Center, and more.

Mobile DiskOnChip G3

M-Systems announced the release of the 64MB Mobile DiskOnChip G3, in
collaboration with Toshiba, to meet the needs of feature-rich mobile devices,
such as PDAs and 2.5G and 3G wireless devices. The G3 Flash disk is based on
multilevel cell (MLC) NAND Flash memory, which reduces silicon size up to 50%
by storing two bits per cell rather than one. The G3 boosts MLC NAND
performance levels to those of binary NAND Flash rates. The G3 is available in a
7 × 10 × 1.2mm Fine-Pitch Ball Grid Array (FBGA) package and in a TSOP-I form
factor for other connected and embedded devices.

Contact M-Systems, Inc., 8371 Central Avenue, Suite A, Newark, California
94560, 510-494-2090, info@m-sys.com, www.m-sys.com.

Quicknet VoIP for Linux

Quicknet Technologies announced Linux Special Edition products that can be
used in concert with GnomeMeeting and Quicknet's MicroTelco VoIP services to
make and receive voice calls over the Internet with a standard telephone set.
Included in the Special Edition product line are internet PhoneJACK-PCI,
LineJACK-ISA and PhoneCARD-PCMCIA add-in cards for quality voice
transmission. Open-source drivers for the cards are included in the kernel,
which combine with Quicknet's VoIP services, OpenH323 protocols and
GnomeMeeting to allow low-cost, internet-based PC-to-phone calls worldwide.

Contact Quicknet Technologies, Inc., 520 Townsend Street, San Francisco,
California 94103, 415-864-5225, www.quicknet.net.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:info@m-sys.com
http://www.m-sys.com
http://www.quicknet.net

SNAP Ultimate I/O Learning Center

The SNAP Ultimate I/O Learning Center is a standalone system that enables
users to learn and train with Opto 22's SNAP Ultimate I/O system. The Learning
Center includes a SNAP Ultimate processor, assorted I/O modules, a SNAP rack,
power supply, load panel and cables. Also included are training manuals, a
user's guide and a number of software applications and utilities to help users
develop real-time industrial automation and capture-and-deliver applications.
The Learning Center provides hands-on experience configuring I/O points,
writing simple control strategies and building a graphical user interface.

Contact Opto 22, Inc., 43044 Business Park Drive, Temecula, California 92590,
800-321-OPTO, www.opto22.com.

GSX Server 2.5

The latest version of VMware's GSX Server, version 2.5, is now available. The
enterprise-level virtual machine software is designed for business-critical
applications in data centers and other high-traffic needs. GSX Server offers a
secure and uniform platform for consolidating and partitioning servers to
increase resource utilization and management efficiency. It can run multiple
OSes and associated applications concurrently on a single Intel-based system.
New features for version 2.5 include support for up to 64GB of host memory,
up to 32 host processors and up to 64 active virtual machines.

Contact VMware, Inc., 3145 Porter Drive, Palo Alto, California 94304,
877-486-9273, sales@vmware.com, www.vmware.com.

S3C2500-RGP

Arcturus Networks and Samsung Electronics have partnered on a reference
system, the S3C2500-RGP, for designers of residential gateways (RG), SOHO
networks, internet attached devices (IAD) and convergence equipment. The
system includes base hardware with extensible modules, the Linux OS and
optional firmware suites to improve product functionality while speeding up
design time. The platform is built on Samsung's ARM940 S3C2500 processor
and is powered by µClinux. The system has 4MB of Flash ROM, 8MB of SDRAM,
one 100BaseT Ethernet port, four 100BaseT Ethernet LAN switches, an on-chip
cryptographic accelerator, two serial ports, PCMCIA support and I2C serial
EPROM. Optional support is available for WiFi, WiFi/WAP, multiport DSP voice
and SmartCard VPN authenticaion.

Contact Arcturus Networks, Inc., 116 Spadina Avenue, Suite 100, Toronto,
Ontario M5V 2K6, Canada, 416-621-0125, info@arcturusnetworks.com,
www.arcturusnetworks.com.

http://www.opto22.com
mailto:sales@vmware.com
http://www.vmware.com
mailto:info@arcturusnetworks.com
http://www.arcturusnetworks.com

Repartee LX

The Repartee LX unified messaging system operates on Red Hat and offers
users access and address communications from a wired or wireless telephone
or from a networked PC. Repartee LX enables users to manage real-time
telephone calls as well as voice mail and e-mail messages visually from their
desktops. Text-to-speech capabilities for mobile users are provided by the
ScanSoft RealSpeak speech engine. Features of Repartee LX include 16
international language prompts, analog and serial integrations, web-based
system administration and support for 2-16 ports.

Contact ActiveVoice, Inc., 2033 Sixth Avenue, Suite 500, Seattle, Washington
98121, 800-284-3575, sales@activevoice.com, www.activevoice.com.

FAXCOM Server on Linux

FAXCOM Server on Linux features support for multiple diverse document
attachments using on-the-fly document conversion, and it can support up to 96
ports on one fax server. Expanded fax-routing destination options for inbound
faxes include fax port, dialed digits, sender's transmitting station identifier
(TSID) and caller ID. When necessary, the same fax can be routed to multiple
destinations, including one or more printers. FAXCOM Server on Linux includes
a spam Fax Filter, which monitors incoming fax traffic and either eliminates
spam traffic or quarantines it in a dedicated folder. FAXCOM Server on Linux
also includes a fax-batching mechanism that enables users to send multiple
faxes to the same telephone number in one call.

Contact Biscom, Inc., 321 Billerica Road, Chelmsford, Massachusetts 01824,
800-477-2472, sales@biscom.com, www.biscom.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:sales@activevoice.com
http://www.activevoice.com
mailto:sales@biscom.com
http://www.biscom.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/109/toc109.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Reviews
	Departments
	Kernel Mode Linux
	Toshiyuki Maeda
	KML: Execute User Processes in Kernel
Mode
	What Kernel-Mode User Processes Can Do
	What Kernel-Mode User Processes Cannot
Do
	KML Internals
	The Stack Starvation Problem and Its
Solution
	Performance Measurement

	Introducing the 2.6 Kernel
	Robert Love
	History of 2.5 Thus Far
	O(1) Scheduler
	Preemptive Kernel
	Latency Improvements
	Redesigned Block Layer
	Improved VM Subsystem
	Threading Improvements
	New Sound Layer
	A Look to the Future

	The Kernel Configuration and Build Process
	Greg Kroah-Hartman
	Configuring the Kernel
	Adding a New Configuration Option
	Building the Kernel
	Adding a New Driver to the Build Process
	Conclusion

	Reiser4, Part II: Designing Trees that Cache Well
	Hans Reiser
	Fanout
	B+Trees Are Better than B-Trees
	B+Trees Have a Higher Fanout than
B-Trees
	My Definition of Cache Temperature
	Caching Principles
	Pointers to Nodes
	B+Trees Cache Better than B-Trees
	What Does Balanced Mean?
	A Hint about Articles Ahead

	The Linux Softsynth Roundup
	Dave Phillips
	Synthesizer Architectures
	Plugins
	Get ALSA
	Knowing JACK
	The Testing Environment
	Running Softsynths as Root?
	The Linux Softsynth Roundup
	amSynth
	ALSA Modular Synth
	SpiralSynth Modular
	RTSynth
	Bristol
	Ultramaster Juno6
	ZynAddSubFX
	jMax and Csound
	The Wrap

	Regular Expressions
	Giovanni Organtini
	Basics of Regular Expressions
	Using Regular Expressions
	Basic Regular Expressions
	Conclusion

	Advanced Memory Allocation
	Gianluca Insolvibile
	Memory Management Basics
	Dealing with Memory Status
	Controlling the Allocation Strategy
	Memory Debugging: Consistency Checks
	Memory Debugging: Tracing Blocks
	Debugging Internals
	Conclusions

	Writing Stackable Filesystems
	Erez Zadok
	So You Want to Be a Filesystem
Developer?
	Incremental Filesystem Development
	How a Stackable Filesystem Works
	Getting Started
	Example: Who Watches the Snoopers
	Example: Encryption Fit for a Caesar
	Example: Extending New Functionality to User
Applications
	Conclusion

	Introducing Plone
	Reuven M. Lerner
	What Is Plone?
	Installing Plone
	Creating a Plone Site
	Publishing Documents
	Conclusion

	Battles inside the Computer
	Marcel Gagné

	Using Firewall Builder, Part I
	Mick Bauer
	Where to Install Firewall Builder
	Getting and Installing Firewall Builder
	Debian
	Red Hat
	SuSE
	Creating Objects
	Host Objects
	Network Objects
	Firewall Objects
	Loopback Interfaces
	Next Steps, Next Month

	Closing the Chasm
	Doc Searls

	Doing Good and Preventing Bad
	Phil Hughes

	Programming Jabber
	Paul Barry
	Book Review: Programming
Jabber by D. J. Adams

	Free Software, Free Society: Selected Essays of Richard...
	Marco Fioretti
	Book Review: Free Software, Free
Society: Selected Essays of

	Letters
	Various
	Replacing Microsoft Exchange
	A Bas le Franglais!
	Can I Cluster This App?
	More on Screen, Please
	Geeklog Isn't a PHP-Nuke Fork
	MPAA vs. Free Speech
	Show Us Your Linux License Plate
	Linux Journal Named Our
Son
	Linux at 14,000 Feet
	John 14:6
	Tech Tips Please
	LJ Web Site Helps You
Shop
	New Blog Software
	Set and Forget Linux App
	Father and Son Linux
	Missing #include
	maddog's Travels
	Linux Routers Save Hospital Net
	Sync Files with Unison
	Freeze, Spammer, You're under Arrest
	Give David Bandel More Space
	Blog from Emacs
	Cover Slackware, Please

	Upfront
	Various
	diff -u: What's New in Kernel
Development
	LJ Index—May 2003
	Sources
	They Said It
	Ericsson Releasing TIPC to Open Source under
GPL: One Step Ahead toward Building Carrier-Grade Linux
Clusters
	Resources

	Linux 2.6: Can You Break It?
	Don Marti

	Adaptability and Ingenuity
	Heather Mead

	Best of Technical Support
	Various
	More Help for SSH Question
	Partition Table Changes Don't Take
	Connecting with MSN
	Five Years without a Problem, Now This?
	New Dell Server Locks Up
	Belkin Wireless Card: Supported?
	Can't Boot New Install
	How to Make XDM Come Up at Boot?

	New Products
	Heather Mead
	Mobile DiskOnChip G3
	Quicknet VoIP for Linux
	SNAP Ultimate I/O Learning Center
	GSX Server 2.5
	S3C2500-RGP
	Repartee LX
	FAXCOM Server on Linux

